

*Corresponding author: liub@tsinghua.edu.cn.
Others: {yang-t10, dra08, lu-jy11, zsj09, dhc10}@mails.tsinghua.edu.cn.
Supported by NSFC (61073171, 60873250), Tsinghua University Initiative
Scientific Research Program, the Specialized Research Fund for the Doctoral
Program of Higher Education of China(20100002110051).

CLUE: Achieving Fast Update over Compressed Table for Parallel Lookup with
Reduced Dynamic Redundancy

Tong Yang, Ruian Duan, Jianyuan Lu, Shenjiang Zhang, Huichen Dai and Bin Liu*
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract— The sizes of routing table in backbone routers
continue to keep a rapid growth and some of them currently
increase up to 400K entries [1]. An effective solution to deflate
the large table is the routing table compression. Meanwhile,
there is an increasingly urgent demand for fast routing update
mainly due to the change of network topology and new
emerging Internet functionalities. Furthermore, the Internet
link transmission speed has scaled up to 100Gbps
commercially and towards 400Gbps Ethernet for laboratory
experiments, resulting in a raring need of ultra-fast routing
lookup. To achieve high performance, backbone routers must
gracefully handle the three issues simultaneously: routing table
Compression, fast routing Lookup, and fast incremental
UpdatE (CLUE), while previous works often only concentrate
on one of the three dimensions.

To address these issues, we propose a complete set of
solutions—CLUE, by improving previous works and adding a
novel incremental update mechanism. CLUE consists of three
parts: a routing table compression algorithm, an improved
parallel lookup mechanism, and a new fast incremental update
mechanism. The routing table compression algorithm is based
on ONRTC algorithm [2], a base for fast TCAM parallel
lookup and fast update of TCAM. The second part is the
improvement of the logical caching scheme for dynamic load
balancing parallel lookup mechanism [3]. The third one is the
conjunction of the trie, TCAM and redundant prefixes update
algorithm. We analyze the performance of CLUE by
mathematical proof, and draw the conclusion that speedup
factor is proportional to the hit rate of redundant prefixes in
the worst case, which is also confirmed by experimental results.
Large-scale experimental results show that, compared with the
mechanism in [3], CLUE only needs about 71% TCAM entries,
4.29% update time, and 3/4 dynamic redundant prefixes for
the same throughput when using four TCAMs. In addition,
CLUE has another advantage over the mechanism in [3] -- the
frequent interactions between control plane and data plane
caused by redundant prefixes update can be avoided.

I. INTRODUCTION
Internet has maintained a rapid growth for more than ten

years, which brings three major issues: i) routing table
compression -- due to an annual increase of about 15% of
the routing table size [4], ISPs struggle to suppress the table
growth, so as to further postpone the requirement for
upgrading the router’s memory; ii) routing lookup -- to
handle the current tens of gigabit-per-second traffic, the
backbone routers must be able to forward hundreds of
millions of packets per second, thereby bringing huge
pressure to routing lookup; iii) fast update -- facing more

and more frequent routing updates, routing table must be
incrementally updated as fast as possible. These three issues
of Compression, Lookup, and UpdatE are abbreviated to
CLUE, and CLUE also stands for a set of solutions for them
in this paper.

With regard to i), the typical solutions are [5-8].
Although they can achieve high compression ratio, they fail
to achieve fast updates when Ternary Content Addressable
Memory (TCAM) is used. Therefore, we proposed ONRTC
algorithm in [2], which supports parallel lookup and fast
update.

With regard to ii), TCAM-based solutions are usually
adopted in backbone routers. TCAMs are fully associative
memories that allow a “don’t care” state to be stored in each
memory cell in addition to 0s and 1s. One TCAM access can
finish one routing lookup operation while software-based
solutions might need multiple memory accesses. Therefore,
TCAM-based solutions are much faster and widely used for
the routing lookup nowadays. However, the TCAM-based
solutions are of high power consumption and cost. In order
to achieve power efficiency, F. Zane et al. proposed a bit-
selection architecture [9], which hashes a subset of the
destination address bits to a TCAM partition, thus making
TCAM-based routing table power efficient. This algorithm is
referred to as ID-bit partition algorithm in this paper. It only
concentrates on reducing power consumption, but cannot
accelerate routing lookup.

Take an Ethernet link with 400Gbps for example,
suppose each packet is at its minimum size of 64 bytes,
routers should complete a packet lookup every 1.28ns
theoretically, while the common TCAM runs at around 166
MHz. Therefore, parallel lookup with multiple TCAMs is
destined if TCAM solution is adopted. Towards this target,
previous works have proposed two mechanisms: Kai’s
algorithm [10] and Dong’s algorithm [3].

In [10], Kai Zheng et al. proposed a TCAM-based
parallel architecture, which employs an intelligent
partitioning algorithm, takes advantage of the inherent
characteristics of Internet traffic, and increases packet
forwarding rate multiple times over traditional TCAMs.
Power consumption is also reduced by ID-bit partition
algorithm. In order to achieve load balancing, Kai Zheng et
al. added 25% redundant prefixes to the system based on the
long period statistical results. For convenience, this
algorithm is referred to as Statistical Load balancing Parallel
Lookup (SLPL) in this paper.

However, according to the data mining results in [3], the
average overall bandwidth utilization was low but the
Internet traffic could be very bursty. Hence, during bursty

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.79

678

periods, mapping routing table partitions into TCAM chips
based on long-term traffic distribution observations cannot
balance the workload of individual TCAM chip effectively.
Therefore, the redundant prefixes should be dynamic
adjusting, thus Dong Lin et al. proposed a power-efficient
parallel TCAM-based lookup engine with a distributed
logical Caching scheme for dynamic Load balancing Parallel
Lookup (CLPL), which is referred to as CLPL in this paper.
By using logical caches, the traffic can be allocated to each
TCAM relatively evenly. Unfortunately, CLPL doesn’t cover
routing compression and update, and its lookup mechanism
can also be improved to some extent.

With regard to iii), current solutions mostly either only
focuses on i), or only on ii), but seldom emphasize update,
maybe because the update was not so frequent before.
However, according to our data mining results, the update
issue is becoming more and more serious: the received
updates messages of the backbone routers have reached 35K
per second in the traffic peak, which will potentially make
the traditional algorithm not applicable.

The system performance will be optimized, only if the
three issues are solved simultaneously. In order to achieve
this goal, there are still several aspects which need to be
improved.

1) The routing table should be compressed to reduce
hardware cost.

2) The amount of redundant prefixes should be further
reduced.

3) The frequent interactions between data plane and
control plane should be avoided.

4) The update algorithm should be studied profoundly.
Towards the above four targets, we propose a complete

set of solutions -- CLUE. CLUE consists of a routing table
compression algorithm (which leverages to our previous
work, ONRTC), an improved parallel lookup mechanism
based on CLPL, and a new incremental update mechanism,
which involves the trie, TCAM and redundant prefixes
update. The design philosophy of CLUE is that we should
not view the three issues isolatedly and statically, so as to
avoid one-sidedness. In other words, only an organic
combination of the three aspects can make the forwarding
plane of routers work well.

The first part of CLUE, i.e., the previously proposed
ONRTC algorithm [2], compresses the routing table size to
70% of its original size. More importantly, it benefits the
second and the third part greatly, for prefix overlap is
eliminated.

The second part of CLUE is an improvement of CLPL.
After compressed by ONRTC, the routing table is not
overlapped any more, and thus a lot of advantages show up:
1) the domino effect in the TCAM update process will never
happen again; 2) the priority encoder is no longer needed --
this not only reduces hardware cost, but also reduces the
latency of TCAM lookup; 3) TCAM partitions can be split
exactly evenly without redundancy; 4) The compression has
saved a part of TCAM’s hardware resource. In addition, we
make the following improvements: 1) Dynamic Redundancy
(DRed) i doesn’t cache TCAM i’s prefixes, for TCAM i and
DRed i will never be looked-up simultaneously, and thus 1/4

TCAM space can be saved when using four TCAMs; 2)
because of Longest Prefix Match (LPM), when DRed is
missed, the destination IP address must be sent to control
plane to compute the prefix which should be stored in DRed
by using RRC-ME algorithm [11]. Because overlap is
eliminated by ONRTC, RRC-ME algorithm is no longer
needed in CLUE. We just need to put the prefixes which are
hit in the TCAM into DRed. Therefore, the interactions
between control plane and date plane caused by DRed update
can be totally avoided.

The third part of the CLUE is a brand new whole update
algorithm, including trie update, TCAM update, and DRed
update. In order to evaluate the update performance
accurately and objectively, TTF (Time to Fresh) is defined
here. TTF means the average computing time to update a
message, which includes TTF1 (TTF-trie): update time of the
trie, TTF2 (TTF-TCAM): update time of TCAM, and TTF3
(TTF-DRed): update time of redundant prefixes. TTF
indicates a router’s sensitivity to the changes of the network
state. The smaller the TTF is, the more sensitive the router
will be.

To summarize, the primary contributions of this paper lie
in the following aspects:

 We propose an integrated problem – CLUE and a
solution set with the same name. CLUE solves the above
three issues simultaneously, improving the system
performance.

 We present a complete mathematical proof to bound
the speedup factor of CLUE, and verify the mathematical
conclusion by experimental results.

The remaining parts of the paper are organized as follows.
Section II surveys the related work. An improved mechanism
based on CLPL is elaborated in Section III. Section IV
illustrates the fast incremental update algorithm of the whole
system. Extensive evaluation on CLUE over a large-sized
real trace is conducted in Section V. Finally we conclude this
paper in Section VI.

II. RELATED WORK
As mentioned above, three major issues are involved:

routing table compression, routing lookup, and update.

A. Compression Algorithm
With respect to compression algorithm, many researches

have been conducted to compress routing table, and the
representative papers are [5-8], which only focus on routing
table compression. These approaches will meet the following
difficulties when being applied to TCAM lookup, given they
don’t solve the prefix overlap:

1) Layout in TCAM: Prefixes must be stored in TCAM
ordered by their length, and a priority encoder is required to
choose the longest one.

2) Update Handling: When update messages arrive, many
prefixes will probably be moved to idle space to hold the
new inserted ones, we call this domino effect. Some
researches manage to resist domino effect, but redundant
prefixes are unavoidably involved.

3) Power Consumption: one major shortcoming of
TCAM is its high power consumption. An effective solution

679

is TCAM partition. There are mainly two partition
algorithms: ID-bit partition [9, 10] and range partition [14],
but [14] does not give the details to determine the partitions.
Therefore, Dong Lin et al. proposed sub-tree partition [3] to
implement range partition. ID-bit partition algorithm cannot
split the table evenly. Sub-tree partition can work better, but
it will introduce redundant prefixes.

If prefix overlap is eliminated, the above problems can be
handled gracefully: 1) prefixes can be arbitrarily stored in
TCAM; 2) the priority encoder is not needed any longer; 3)
domino effect will never happen; 4) TCAM can be split
strictly evenly without any redundancy.

There are mainly two approaches to reduce prefix overlap
[12, 13]. In [12], the routing table is divided into two parts:
the overlapping part and the non-overlapping part, which can
only reduce overlap. To the best of our knowledge, only leaf-
pushing algorithm proposed in [13] can totally eliminate
overlap, but it will substantially incur the expansion of
routing table.

Therefore, we have proposed ONRTC algorithm to
construct optimal non-overlap routing tables, which is
detailed in [2].

B. Routing Lookup Algorithm
With respect to routing lookup, R. Panigrahy et al. in [14]

proposed a parallel searching method by employing multiple
TCAM chips without any load balancing mechanisms, this
approach cannot fully increase the speedup factor. That
explains when eight TCAM chips were employed for parallel
lookup operations, but only a speedup factor of five was
achieved, given the lookup requests were not evenly
distributed. In pursuit of an ultra-high lookup throughput,
Kai Zheng et al. proposed a load balancing mechanism [10]
based on ‘pre-selected’ redundant prefixes. The authors
assume that the lookup traffic distribution over IP prefixes
can be derived from the traffic traces statistically in a long
period. Then a greedy algorithm with 25% more TCAM
entries is proposed to optimally balance the traffic among the
four TCAMs. The problem lies: 1) different network
segments exhibit different traffic patterns, it's hard to come
up with a universal law; 2) statistics in the past does not
predict the future well. Thus in the worst case, when the
traffic is bursty, the average throughput may decrease a lot.

Based on the data analysis collected from [15], Dong Lin
et al. observed that the average overall bandwidth utilization
was low but the Internet traffic could be very bursty. In order
to handle the worst case, CLPL uses logical caches (which
actually mean Dynamic Redundancy (DRed)) in place of the
static redundant prefixes to achieve dynamic load balancing.

C. Incremental Update Mechanism
Speaking of incremental update, there are three aspects: i)

trie update; ii) TCAM update; ii) DRed update, if DRed is
used.

As for trie update, because SLPL and CLPL adopt no
compression algorithm, thus their trie update is fast; while
ONRTC algorithm is adopted in this paper, and the detailed
incremental update algorithm is elaborated in [2].

As for TCAM update, one big obstacle is the domino

effect, and many researchers strive to reduce it. In [16], the
routing table is split into partitions according to the next hop.
Each partition holds a collection of all the prefixes which
share the same next hop, thus there is no need to keep the
prefixes sorted in one partition. In this way, domino effect
can be reduced. However, more than one prefix will be
matched, thus the priority encoder is still needed. In addition,
it cannot achieve power efficiency. In [17], all prefixes are
split and allocated into different single-match TCAMs based
on the ancestor-descendant relationship among them. It
presents an algorithm to guarantee that each single-match
TCAM generates at most one match for a given destination
IP address. However, when a new prefix is inserted, each
single-match TCAM may be required to move some of its
existing prefixes to another TCAM in order to maintain a
disjoint set. What’s worse, power efficiency cannot be
achieved.

As for DRed update, CLPL adopts LRU policy; as for
routing update, SLPL and CLPL didn’t mention it. Therefore,
Bin Zhang et al. in [12] changed CLPL in the following two
aspects:

1) A TCAM-chip is used as a DRed in place of CLPL’s
four logical caches. It is evident that this change will degrade
the whole system’s performance. This can be confirmed
again by their experimental results in Figure 8 in [12]. The
experiments use 12 TCAM chips, and half of the
experimental results show that the speedup factor is less than
11, while 11 is the result of CLPL’s worst case.

2) Bin Zhang et al. argued that SLPL and CLPL
neglected an important factor—the update mechanism. Thus
Bin Zhang et al. put the overlapping part of prefixes on the
top of the TCAM and at the bottom of the next TCAM, while
putting the non-overlapping part in the middle of the TCAM.
This approach can reduce the domino effect to a certain
extent. In contrast, in our paper we eliminate domino effect
totally.

Therefore, we propose CLUE to handle these issues. As
far as we know, this is the first effort on a full-dimensional
system optimization for the three major routing table
problems.

III. PARALLEL ROUTING LOOKUP MECHANISM
With regard to parallel lookup, the naive idea is to

duplicate the routing table multiple copies while using
round-robin lookup. This is obvious of expensive hardware
cost and high power consumption. A smart idea [3, 10] is to
divide the routing table into small partitions (by using
partition algorithm), which are then allocated into TCAMs.
A corresponding load balancing mechanism should be
implemented, for the traffic load of each TCAM is not
evenly distributed among TCAMS. The differences of
different parallel lookup mechanisms lie in the partition
algorithm, lookup mechanism, and redundancy mechanism
for load balancing, which are detailed below.

A. Partition Algorithm
CLPL’s sub-tree partition [3] algorithm outperforms

SLPL’s ID-bit partition algorithm [10]. Unfortunately, they
both introduce redundancy. In our research, because prefix

680

overlap is eliminated by ONRTC, partition algorithm of
CLUE becomes very simple, and the redundancy is no longer
needed. The new partition algorithm of CLUE consists of
two steps:

Step I: compute the partition size. Suppose the size of
routing table is M and the partition count is n, then the size of
each partition is M/n.

Step II: traverse the trie by inorder, and put every M/n
prefixes to each TCAM partition.

It can be concluded that our new partition algorithm is
much more simple and faster than ID-bit partition algorithm
and sub-tree partition algorithm while guaranteeing high
memory utilization.

B. Parallel Lookup Mechanism
The detailed implementation architecture of the parallel

lookup engine is presented in Figure 1 (it appears originally
in Figure 9 in [3]), which is an improved architecture based
on CLPL mechanism. We here further make improvements
and the new mechanism working process is described below
(each step is marked by the number in Figure 1):

Step I, when an IP packet arrives, its destination IP
address is sent to the Indexing Logic.

Step II, the Indexing Logic returns a partition number
which tells the ‘home TCAM’ containing the matching

prefix.
Step III, a tag (the sequence number) is attached to the IP

address, since this mechanism may cause disorder.
Step IV, the IP address with the tag and partition number

is delivered into the Adaptive Load Balancing Logic.
Step V, this is the most important step of our mechanism

-- Dynamic Redundancy for load balancing. To be specific,
each TCAM is split into partitions, and one partition is used
as dynamic redundancy (DRed), as shown in Figure 1. The
work mechanism of Dynamic Redundancy for load
balancing is as follows:

a) If the queue of its home TCAM is not full, the
incoming IP addresses will be looked-up in its home TCAM;

b) If the queue of its home TCAM is full, then the
incoming IP addresses will be sent to the idlest queue. One
important point is worth being mentioned: this kind of IP
addresses will be only looked-up in the corresponding DRed,
NOT the home TCAM. No IP address will be looked-up both
in home TCAM and the corresponding DRed. So in CLUE,
DRed i doesn’t store TCAM i’s prefix. By this way, CLUE
needs smaller redundancy, but has the same hit rate with
CLPL.

c) If the incoming IP address is missed in DRed, it will
be sent back and repeat the above a).

Figure 1. Improved parallel lookup mechanism

C. Novel Dynamic Redundancy Mechanism

To achieve load balancing, SLPL adopts statistical
redundancy, while CLPL adopts logical caches. For CLPL,
as mentioned above, no IP address will be looked-up in both
home TCAM and the corresponding dynamic redundancy
(DRed). As a result, this is NOT really a cache, and we use
the word ‘DRed’ in place of CLPL’s logical caches, but the
DRed is updated by the cache mechanism. According to the
following analysis and experimental results in Section V,
DRed outperforms logical caches a lot.

Generally speaking, cache mechanisms can be divided

into two categories: caching destination addresses (IPs) [18-
20] and caching prefixes [21]. The results in these papers
have demonstrated that caching prefixes is more efficient,
and this is also in accord with our experimental results.
Therefore, we adopt caching prefixes, as CLPL did.

However, one big obstacle of caching prefix is prefix
overlap. Because of LPM, if an inner node is matched, the
corresponding prefix cannot be sent to DRed.

For example, as shown in Figure 2, a prefix = 100000 is
looked-up in the home TCAM, and the LPM result returns p
(p=1*). However, p cannot be sent to DRed, because its child
node q owns a different next hop. It is obvious that p’=100*

681

should be sent to DRed. This approach is called RRC-ME
algorithm [21], which is adopted in CLPL.

Figure 2. RRC-ME algorithm

For RRC-ME algorithm, one important issue is worth
being mentioned here. Although RRC-ME algorithm is
simple, its update algorithm is not an easy task. The update
algorithm mentioned here means that when the routing table
updates, the DRed must update as well. This process must
visit SRAM several times, which incurs additional overhead.

In addition, CLPL adopts RRC-ME algorithm, which
causes frequent interactions between data plane and control
plane, while CLUE doesn’t, and the details are as follows.

Figure 3. The DRed update process of CLPL’s mechanism

Figure 4. The DRed update process of CLUE’s mechanism

The DRed update process of CLPL is shown in Figure 3.
If an incoming IP is looked-up in TCAM1, then the LPM
prefix is 1*. Prefix 1* must be sent to control plane, which
executes RRC-ME algorithm by traversing the trie stored in
SRAM, and returns 100*. Then 100* is sent to data plane,
and is inserted into the four logical caches. It can be noted
that the DRed update process will execute RRC-ME
algorithm, and frequent interactions happen, disturbing
routing lookup a lot.

As aforementioned, DRed i and TCAM i will never be
looked-up simultaneously, thereby CLUE reduces CLPL’s

DRed size by the rule that DRed i doesn’t cache TCAM i’s
prefixes, but the hit rate doesn’t decline. With regard to the
four TCAM chips, the DRed size of CLUE is reduced into
3/4 of that of CLPL.

Because overlap is eliminated, RRC-ME algorithm is no
longer involved. Our new DRed process is shown in Figure 4.
If an incoming IP address is looked-up in TCAM1, the result
of LPM is 100*, then 100* is sent to data plane directly, and
is inserted into the other three DReds. As a result, control
plane will not be involved in the process of DRed update
process. In this way, the update process of DRed is faster and
more efficient.

To sum up, our new DRed Mechanism can achieve
smaller DRed size and avoid frequent interactions between
data plane and control plane.

D. Lower Bound of the System Performance

Figure 5. Parallel lookup in the worst case

With regard to the lower bound of the system
performance, Dong Lin et al. has presented a formal
mathematical proof, which is flawed. Therefore, a complete
formal mathematical proof is given here, and the proof
conclusion is in accord with the corresponding experimental
results.

Our deduction is under the following two premises:
1) The update cost is ignored.
2) The TCAM1 is always working.
The two premises are practically feasible. Regarding

premise 1), Dong Lin et al. show that when the cache size is
set to 1024 and only one cache-missed element is updated
within 5000 clock cycles, the system can still easily achieve
100% throughput [3]. In addition, each routing update only
causes one shift in TCAM, that is, O(1) time complexity by
CLUE. Therefore, the time cost of routing update is
negligible. Premise 2) holds true via a policy that keeps the
queue of TCAM1 never empty.

In the worst case of this parallel system, all the traffic is
delivered to a single TCAM, which is TCAM1 in Figure 5. It
suggests that TCAM2~TCAMN-1 is idle, only DRed2~
DRedN-1 are still working. The definitions of the symbols are
described below:

N means the number of TCAM chips used in this system;
R means the maximum input traffic;
E means the processing ability of each TCAM;
u means the percentage of TCAM1’s processing ability

used to handle the traffic which goes directly to TCAM1;

682

1-u means the percentage of processing ability used to
handle the packets missed in DRed;

h means the hit rate of the DRed;
t means the speedup factor of this system.
Firstly, it is easy to get each symbol’s range:

�� � � � �� � � � �� 	

Secondly, when all TCAMs work at their best, the system
can handle the maximum workload R. � �
��� � �� � ��� � �� �
 � � � � � �����������������������������������
��
 � � � ����������������������������������

Thirdly, TCAM1 preserves 1-u processing ability to
handle DRed-missed traffic. � �
��� � ��� � �� � �� � �� � ���� � � �
 � �
 � � �
 � �� � ��

� �
 � �
 � � �
 � �� � � � � � � � �� � � ����������������������������������
��� � �
 � �
 � ����������������������������������
According to (1) and (3), we get that ������������������������������������
 � �� � ��� � �����������������������������������
Then
 � � � �

As long as

� �
 � �
 � �

According to [18-21] and our experiment results, the hit
rate of (N-2)/(N-1) can be easily achieved.

According to (5), it can be concluded that in the worst
case � �

It suggests that in real traffic,
 � �� � ��� � � always
holds true. This conclusion is in consistent with subsequent
experimental results (see Figure 16).

IV. THE NEW INCREMENTAL UPDATE MECHANISM

When an update message arrives, the routing table should
be updated as fast as possible. Specifically, the whole update
process can be divided into three steps (see Figure 6): 1) trie
update; 2) TCAM update; 3) DRed update. When the three
steps are all finished, the update message takes into effect.
Then how to evaluate the performance of incremental update?
Time to Fresh (TTF) is defined in this paper, including TTF1
(TTF-trie), TTF2 (TTF-TCAM), and TTF3 (TTF-DRed).

The update involved in TCAM will interrupt routing
lookup, resulting in decrease of lookup rate. Therefore, TTF2
and TTF3 are more important than TTF1.

Figure 6. The whole incremental update process of CLUE.

A. Trie Update
The performance of trie update is evaluated by TTF1

(TTF-trie), which means the average computing time of
updating the trie. If no compression algorithm is adopted,
TTF1 is minimal, and is regarded as ground-truth.

Because CLPL mechanism adopted no compression
algorithm, thus its TTF1 is minimal, and TTF1-CLPL is
defined to represent its TTF-trie. To be different, we adopt
previously proposed ONRTC algorithm to compress the trie,
and the update time is represented by TTF1-CLUE. The
process of incremental update always keeps the trie non-
overlap. Experimental results show that TTF1-CLUE is a
little bit longer than TTF1-CLPL.

B. TCAM Update
Generally speaking, in order to reduce domino effect, the

common method is to keep some redundancy at the end of
TCAM. A naive solution [22] is shown in Figure 7(a). When
a prefix is inserted, it will move all the following pre�xes
one by one, thus has a time complexity O(n) in the worst
case, which is clearly undesirable.

(a) a naive solution (b) a classical solution

Figure 7. Two approaches to reduce domino effect

A classical solution [22] is based on the observation that
two pre�xes with the same length can be placed
interchangeably. This suggests that the domino effect can be
reduced. As shown in Figure 7(b), there is only a partial
ordering constraint among all pre�xes. This approach
enables an empty memory location to be found in at most 32
prefix shifts. This is a classical method without extra
overhead, thus we assume it is adopted in CLPL, and is
selected to be compared with CLUE. Experimental results
show that this solution needs 14.994 shifts in average.

The previous work [3, 10] didn’t emphasize incremental
update too much. After overlap is eliminated, the updating
method of TCAM becomes clear and simple: when inserting

683

a prefix, just write it to the end of TCAM; when deleting a
prefix, just cut the last prefix to replace it. Therefore, CLUE
needs one shift at most to handle an update message.

The performance of TCAM update is evaluated by TTF2
(TTF-TCAM), which indicates the update time of TCAM.
Whatever partition algorithms are adopted, TCAM update
must wait till the trie update is finished. The current partition
algorithms probably need to change more than one prefix
when one update message arrives.

It is obvious that our new TCAM update mechanism is
much more efficient than all the traditional TCAM update
mechanisms. This conclusion is consistent with the
subsequent experimental results.

C. DRed Update
After the update of TCAM, in order to guarantee

synchronization and correctness, the DRed must be updated,
too. As mentioned above, CLPL adopts RRC-ME algorithm
and its update algorithm.

When inserting or deleting a prefix in home TCAM,
RRC-ME algorithm must look up the trie and find all the
prefixes which may be changed by this update. During the
process, SRAM must be visited several times, which is a
waste of time.

In contrast, when inserting a prefix in home TCAM,
CLUE’s DRed needs no change; when deleting a prefix,
CLUE just lookups it in the DRed. If it exists, just delete it;
otherwise, do nothing.

It is obvious that CLUE is much more efficient than
CLPL in DRed update. This conclusion is also in accord with
the subsequent experimental results. TTF is the sum of TTF1,
TTF2, and TTF3. The whole TTF comparison between
CLPL and CLUE is given in the subsequent experimental
results.

V. EXPERIMENTAL RESULT

A. Experimental Settings
1) Trace

TABLE I. LOCATIONS OF ROUTERS.

ID Location ID Location
rrc01 LINX, London rrc11 New York (NY), USA
rrc03 AMS-IX, Amsterdam rrc12 Frankfurt, Germany
rrc04 CIXP, Geneva rrc13 Moscow, Russia
rrc05 VIX, Vienna rrc14 Palo Alto, USA
rrc06 Otemachi, Japan rrc15 Sao Paulo, Brazil
rrc07 Stockholm, Sweden rrc16 Miami, USA

The RIB packets are taken from www.ripe.net [1] at
RIPE NCC, Amsterdam, which collects default free routing
updates from peers. In order to objectively test the
performance of ONRTC algorithms, the RIB packets at 8:00
on October 1 in 2011 from 12 routers are selected. (There
are 16 routing tables available in www.ripe.net, but four of
them don’t update to present). Table I shows the routers’
location.

In the routing update experiment, two traces are selected.
In order to measure TTF-ratio, the update data from
2011.10.01/08:00 to 2011.10.02/08:00 is selected.

With regard to real traffic, trace from [23] is selected.
The traffic from 20:59 to 21:14 on 2011.02.17 in Chicago is
downloaded and parsed.

Our lab has a router prototype with TCAM
(CYNSE70256) in its linecards. CYNSE70256 supports
256K entries with 36-bit width. It can operate at a speed of
up to 41.5 MHz by looking up 36 bit-width entries. It
suggests that each lookup costs: �� ��!�"#$ % ��&�

Generally speaking, the update time of each lookup is
roughly equal to the time of moving a prefix. Therefore, 24ns
is regarded as the time cost of moving one prefix in TCAM.

2) Computer Configuration
Our experiments are carried out on a windows XP sp3

machine with Pentium (R) Dual-Core CPU 5500@2.80GHz
and 4G Memory.

B. Experiments on Compression by ONRTC

Figure 8. FIB size before and after compression on 12 routers.

The compression results of ONRTC of 12 routers are
shown in Figure 8. The taller bars are the original FIB size,
while the lower bars are the FIB size after compression by
ONRTC algorithm. According to the results, the compressed
prefix number is 71% of the original in average, and the
compression time is around 39 milliseconds.

Figure 9. partition comparison among the three algorithms.

rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc11 rrc12 rrc13 rrc14 rrc15 rrc16
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

of

 n
od

es

 # of original nodes
 # of compressed nodes

Router ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5000

10000

15000

20000

25000

30000

 SCPL
 CLPL
 CLUE

Partition ID

pa
rti

tio
n

si
ze

684

Figure 9 shows the partition results of three algorithms:
SCPL algorithm, CLPL algorithm, and CLUE algorithm.
The same experiments are conducted on 12 routers, and only
one is shown in the figure, given the results are similar. As
shown in the figure, SCPL cannot split prefixes evenly, and
CLPL split prefixes evenly at the cost of redundancy. In
contrast, CLUE splits prefixes evenly with no redundancy,
with much fewer prefixes in one partition than both SCPL
and CLPL. Besides, as the number of partitions rises, SCPL
and CLPL introduces more redundancy (see Figure 6 in [3]),
while CLUE still has no redundancy.

C. Experiments on TTF
The x-axis of Figure 10~14 stands for the arrival time of

update messages. For example, ‘201010231945’ means
2010.10.10/23:19:45.

Figure 10. TTF1 comparison between CLPL and CLUE.

Figure 10 shows TTF1 (TTF-trie) of CLUE (ONRTC)
and CLPL (ground-truth). It can be observed that TTF1 of
CLUE is a little longer than ground-truth. TTF1 of CLUE
ranges from 0.1924 microseconds to 0.3574 microseconds
with a mean of 0.2210 microseconds. Because TTF1 doesn’t
interrupt routing lookup, a litter bigger TTF1 of CLUE
doesn’t influence the system performance.

Figure 11. TTF2 comparison between CLPL and CLUE.

Figure 11 shows TTF2 (TTF-TCAM) of CLUE and the
general method (see Figure 7(b)). As mentioned in
experimental settings, 24ns is regarded as the time cost of
moving one prefix in TCAM. TTF2 of CLPL ranges from
0.3558 microseconds to 0.3782 microseconds with a mean of
0.3598 microseconds. In contrast, as mentioned above,
CLUE needs only one shift (O(1)) to handle an update
message, which means 0.024 microseconds for each update.

Figure 12. TTF3 comparison between CLPL and CLUE.

To evaluate the TTF3, we plot TTF-DRed in Figure 12.
TTF3 of CLUE still maintains 0.024 microseconds; while
TTF3 of CLPL ranges from 0.1802 microseconds to 0.2878
microseconds with a mean of 0.1993 microseconds. In other
words, TTF3 of CLPL is 8.3 times of that of CLUE in
average, and 11.99 times in the worst case.

Figure 13. TTF2+TTF3 comparison between CLPL and CLUE.

As aforementioned, TTF2 and TTF3 are more important
than TTF1, because TTF1 is the time cost in the control
plane which doesn’t interrupt routing lookup. In other words,
TTF2 and TTF3 influence the system performance much
more than TTF1. Therefore, the comparison of TTF2+TTF3
between CLPL and CLUE is shown in Figure 13. Results

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TT
F1

(m

ic
ro

se
co

nd
)

Time

 TTF1-CLPL
 TTF1-CLUE

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

TT
F2

(m

ic
ro

se
co

nd
)

Time

 TTF2-CLPL
 TTF2-CLUE

20
11

01
01

 1
65

0
20

11
01

01
 1

74
0

20
11

01
01

 1
83

0
20

11
01

01
 1

92
0

20
11

01
01

 2
01

0
20

11
01

01
 2

10
0

20
11

01
01

 2
15

0
20

11
01

01
 2

24
0

20
11

01
01

 2
33

0
20

11
01

02
 0

02
0

20
11

01
02

 0
11

0
20

11
01

02
 0

20
0

20
11

01
02

 0
25

0
20

11
01

02
 0

34
0

20
11

01
02

 0
43

0
20

11
01

02
 0

52
0

20
11

01
02

 0
61

0
20

11
01

02
 0

70
0

20
11

01
02

 0
75

0
20

11
01

02
 0

84
0

20
11

01
02

 0
93

0
20

11
01

02
 1

02
0

20
11

01
02

 1
11

0
20

11
01

02
 1

20
0

20
11

01
02

 1
25

0
20

11
01

02
 1

34
0

20
11

01
02

 1
43

0
20

11
01

02
 1

52
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

TT
F3

(m

ic
ro

se
co

nd
)

 TTF3-CLPL
 TTF3-CLUE

Time

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TT
F2

+T
TF

3
 (

m
ic

ro
se

co
nd

)

Time

 (TTF2+TTF3)-CLPL
 (TTF2+TTF3)-CLUE

685

show that TTF2+TTF3 of CLUE is 4.29% of CLPL in
average and 3.65% in the worst case.

Figure 14. TTF1+TTF2+TT3 comparison between CLPL and CLUE

TTF, which is the sum of TTF1, TTF2, and TTF3,
measures a router’s sensitivity to the changes of the network
state. Figure 14 shows the TTF of CLPL and CLUE. In the
figure, the TTF of CLPL ranges from 0.6303 microseconds
to 0.8342 microseconds with a mean of 0.6664 microseconds.
In contrast, TTF of CLUE is only 0.2690 microseconds in
average. In other words, TTF of CLPL is 234% of that of
CLUE.

D. Experiments on Parallel Lookup

TABLE II. WORKLOAD ON DIFFERENT PARTITIONS AND TCAM
CHIPS.

2 38.103.176.0 61.91.89.255 21.92%
12 97.69.128.0 119.46.79.255 10.57%
20 194.133.118.0 196.11.124.255 9.18%

23 202.30.78.0 203.128.191.255 4.52%
31 216.207.89.0 255.255.255.255 3.32%
8 72.9.88.0 77.79.211.255 3.13%

16 168.87.144.0 183.87.78.255 0.81%
13 119.46.80.0 134.75.216.255 0.72%
5 65.68.16.0 66.133.181.255 0.70%

11 91.209.9.0 97.69.127.255 0.08%
10 85.95.88.0 91.209.8.255 0.07%
0 0.0.0.0 12.177.231.255 0.00%

4 0.16%

…

2 17.43%

…

3 4.54%

…

1 77.88%

…

#of
Bucket Range Low Range High

Percent of
partit ion

Percent of
TCAM

of TCAM
chips

As shown in TABLE II, routing table from rrc01 is split

into 32 partitions evenly by CLUE. After test by real traffic,
the workload of each partition is shown in Column ‘Percent
of partition’. It can be observed that workload among
different partitions varies a lot. To simulate bursty traffic, the
partitions are sorted by the workload percentage in

descending order. The first 8 partitions are mapped to
TCAM1, while the second, third and the fourth 8 partitions
are mapped to TCAM 2, 3, 4, respectively. This is a possible
mapping situation with extremely uneven workload among
TCAMs.

Figure 15. Load balancing of workload distribution by CLUE.

The grey bars labeled ‘Original’ in Figure 15 show the
extremely uneven workload distribution of Table II. An
experiment using this distribution is designed to evaluate the
function of CLUE’s load balancing. In the simulation
process, each TCAM takes 4 clocks to process a packet,
while a packet arrives per clock. The FIFO is set to 256 and
redundancy size is set to 1024 prefixes. The green bars show
the traffic distribution balanced by CLUE. It can be seen that
the green bars labeled ‘CLUE’ are much more even than
‘Original’. It can be concluded that CLUE can achieve
excellent load balancing performance even in the worst case.

Figure 16. Speedup factor comparison between CLPL and CLUE and the
worst case

Figure 16 shows the relationship between Hit Rate and
Speedup Factor. It is a comparison among CLPL, CLUE,

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TT
F1

+T
TF

2+
TT

F3

(m
ic

ro
se

co
nd

)

Time

 (TTF1+TTF2+TTF3)-CLPL
 (TTF1+TTF2+TTF3)-CLUE

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TCAM Number

W
or

kl
oa

d
P

er
ce

nt
ag

e

Original
CLUE

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Hit Rate

S
pe

ed
up

 F
ac

to
r

Worst Case

CLPL

CLUE

t=(N-1)h+1, N=4

686

and the worst case in theory. The dotted lines of CLPL and
CLUE are the results of cubic curve fitting. Both CLPL and
CLUE are much better than the worst case, which is
consistent with previous theory results. This figure suggests
that the speedup factor rises as hit rate rises. In terms of
CLPL and CLUE, the same Speedup Factor will be achieved
by the same hit rate, because they almost overlap.

Figure 17. Hit rate comparison between CLPL and CLUE.

The relationship between DRed Size and Hit Rate is
plotted in Figure 17. The top curve is the result of CLUE,
and the other one belongs to CLPL. It indicates that CLUE
achieves much higher Hit Rate than CLPL with the same
DRed Size. Whereas Figure 16 shows Hit Rate determines
Speedup Factor, then it can be indirectly concluded that
CLUE achieves much higher Speedup Factor than CLPL
with the same DRed Size.

VI. CONCLUSIONS
Due to the explosive increase of Internet volume and

traffic, routing tables in backbone routers have been
increasing approximately 15% in size annually [4].
Meanwhile, the link transmission speed of backbone routers
has increased to tens of gigabit-per-second. Consequently,
the backbone routers are facing CLUE: routing table
Compression, fast routing Lookup, and fast incremental
UpdatE.

Because traditional algorithms seldom cover the three
problems simultaneously, we propose a complete set of
solutions -- CLUE. The design philosophy of CLUE is that
we should not view the three problems isolatedly and
statically, avoiding one-sidedness. Firstly, CLUE adopts
ONRTC algorithm, which supports parallel routing lookup
and fast incremental update. Secondly, several improvements
are made based on CLPL mechanism, achieving lower
hardware cost. Thirdly, a novel whole update algorithm
TTF is defined and evaluated, including TTF-trie, TTF-
TCAM, and TTF-DRed. Extensive experimental results
show that CLUE needs much less hardware resource and
shorter update time to achieve the same speedup factor

compared with CLPL.

REFERENCES
[1] RIPE Network Coordination Centre.

http://www.ripe.net/data-tools/stats/ris/ris-raw-data.
[2] Tong Yang, Ting Zhang, Shenjiang Zhang and Bin Liu. Constructing

Optimal Non-overlap Routing Tables. In Proc. ICC, 2012.
[3] Lin, D., Zhang, Y., Hu, C., Liu, B., Zhang, X., Pao, D. Route Table

Partitioning and Load Balancing for Parallel Searching with TCAMs.
In Proc. IPDPS, 2007.

[4] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. IPv4
Address Allocation and the BGP Routing Table. ACM SIGCOMM
Computer Communication Review, vol. 35, pp. 71–80, January 2005.

[5] R. Draves, C. King, S. Venkatachary, and B. D. Zill. Constructing
Optimal IP Routing Tables. In Proc. IEEE INFOCOM, 1999.

[6] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of
Router Forwarding Tables. In Proc. IEEE INFOCOM, 2010.

[7] Heeyeol Yu. A memory- and time-efficient on-chip TCAM minimizer
for IP lookup. DATE '10 Proceedings of the Conference on Design,
Automation and Test in Europe, 2010.

[8] Qing Li, Dan Wangy, Mingwei Xu, Jiahai Yang. On the Scalability of
Router Forwarding Tables. Nexthop-Selectable FIB Aggregation. In
Proc. IEEE INFOCOM, 2011.

[9] F. Zane, G. Narlikar, A. Basu. CoolCAMs: Power-Efficient TCAMs
for Forwarding Engines. In Proc. INFOCOM, 2003.

[10] Zheng, K., Hu, C., Lu, H., Liu, B. A TCAM-based distributed parallel
IP lookup scheme and performance analysis. IEEE/ACM Trans. Netw.
14, 863–875, 2006.

[11] Mohammad J. Akhbarizadeh and Mehrdad Nourani. Efficient Prefix
Cache for Network Processors, High Performance Interconnects 2004,
pp.41-46, August 2004.

[12] Bin Zhang, Jiahai Yang, Jianping Wu, Qi Li, Donghong Qin. An
Ef�cient Parallel TCAM Scheme for the Forwarding Engine of the
Next-generation Router. In Proc. IFIP/IEEE IM, 2011.

[13] V. Srinivasan and G. Varghese. Fast IP lookups using controlled
pre�x expansion, ACM TOCS, vol. 17, pp. 1–40, Feb. 1999.

[14] R. Panigrahy, S. Sharma. Reducing TCAM Power Consumption and
Increasing Throughput. Proceedings of HotI 2002, pp.107-112,
August 2002.

[15] Abilene. http://www.abilene.iu.edu/noc.html.
[16] E. Ng and G. Lee. Eliminating sorting in ip lookup devices using

partitioned table. In The 16th IEEE International Conf. on
Application Speci�c Systems, Architecture and Processors, 2005.

[17] K. Jinsoo and K. Junghwan. An ef�cient ip lookup architecture with
fast update using single-match tcams. In WWIC, 2008.

[18] Woei-Luen Shyu, Cheng-Shong Wu, and Ting-Chao Hou. Efficiency
Analyses on Routing Cache Replacement Algorithms, ICC’2002,
Vol.4, pp.2[24]2-2236, April/May 2002.

[19] Tzi-cker Chiueh,Prashant Pradhan. High-Performance IP Routing
table Lookup Using CPU Caching. In Proc. INFOCOM, 2003.

[20] Bryan Talbot, Timothy Sherwood, Bill Lin. IP Caching for Terabit
Speed Routers. In Proc. GLOBECOM, 1999.

[21] Mohammad J, Akhbarizadeh and Mehrdad Nourani. Efficient Prefix
Cache for Network Processors. High Performance Interconnects 2004,
pp.41-46, August 2004.

[22] D. Shah and P. Gupta, Fast incremental updates on ternary-CAMs for
routing lookups and packet classification. In Proc. Hot Interconnects
8, Aug. 2000, pp. 145–153.

[23] The CAIDA Anonymized 2011 Internet Traces - <20110217> Colby
Walsworth, Emile Aben, kc claffy, Dan Andersen,
http://www.caida.org/data/passive/passive_2009_dataset.xml

0 100 200 300 400 500 600 700 800 900 1000 1100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DRed Size

H
it

R
at

e

CLPL
CLUE

687

