
 
*Corresponding author: liub@tsinghua.edu.cn. 
Others: {yang-t10, dra08, lu-jy11, zsj09, dhc10}@mails.tsinghua.edu.cn.  
Supported by NSFC (61073171, 60873250), Tsinghua University Initiative 
Scientific Research Program, the Specialized Research Fund for the Doctoral 
Program of Higher Education of China(20100002110051). 

CLUE: Achieving Fast Update over Compressed Table for Parallel Lookup with 
Reduced Dynamic Redundancy 

Tong Yang, Ruian Duan, Jianyuan Lu, Shenjiang Zhang, Huichen Dai and Bin Liu* 
Tsinghua National Laboratory for Information Science and Technology 

Department of Computer Science and Technology, Tsinghua University, Beijing, China 
 

Abstract— The sizes of routing table in backbone routers 
continue to keep a rapid growth and some of them currently 
increase up to 400K entries [1]. An effective solution to deflate 
the large table is the routing table compression. Meanwhile, 
there is an increasingly urgent demand for fast routing update 
mainly due to the change of network topology and new 
emerging Internet functionalities. Furthermore, the Internet 
link transmission speed has scaled up to 100Gbps 
commercially and towards 400Gbps Ethernet for laboratory 
experiments, resulting in a raring need of ultra-fast routing 
lookup. To achieve high performance, backbone routers must 
gracefully handle the three issues simultaneously: routing table 
Compression, fast routing Lookup, and fast incremental 
UpdatE (CLUE), while previous works often only concentrate 
on one of the three dimensions. 

To address these issues, we propose a complete set of 
solutions—CLUE, by improving previous works and adding a 
novel incremental update mechanism. CLUE consists of three 
parts: a routing table compression algorithm, an improved 
parallel lookup mechanism, and a new fast incremental update 
mechanism. The routing table compression algorithm is based 
on ONRTC algorithm [2], a base for fast TCAM parallel 
lookup and fast update of TCAM. The second part is the 
improvement of the logical caching scheme for dynamic load 
balancing parallel lookup mechanism [3]. The third one is the 
conjunction of the trie, TCAM and redundant prefixes update 
algorithm. We analyze the performance of CLUE by 
mathematical proof, and draw the conclusion that speedup 
factor is proportional to the hit rate of redundant prefixes in 
the worst case, which is also confirmed by experimental results. 
Large-scale experimental results show that, compared with the 
mechanism in [3], CLUE only needs about 71% TCAM entries, 
4.29% update time, and 3/4 dynamic redundant prefixes for 
the same throughput when using four TCAMs. In addition, 
CLUE has another advantage over the mechanism in [3] -- the 
frequent interactions between control plane and data plane 
caused by redundant prefixes update can be avoided. 

I. INTRODUCTION 
Internet has maintained a rapid growth for more than ten 

years, which brings three major issues: i) routing table 
compression -- due to an annual increase of about 15% of 
the routing table size [4], ISPs struggle to suppress the table 
growth, so as to further postpone the requirement for 
upgrading the router’s memory; ii) routing lookup -- to 
handle the current tens of gigabit-per-second traffic, the 
backbone routers must be able to forward hundreds of 
millions of packets per second, thereby bringing huge 
pressure to routing lookup; iii) fast update -- facing more 

and more frequent routing updates, routing table must be 
incrementally updated as fast as possible. These three issues 
of Compression, Lookup, and UpdatE are abbreviated to 
CLUE, and CLUE also stands for a set of solutions for them 
in this paper. 

With regard to i), the typical solutions are [5-8]. 
Although they can achieve high compression ratio, they fail 
to achieve fast updates when Ternary Content Addressable 
Memory (TCAM) is used. Therefore, we proposed ONRTC 
algorithm in [2], which supports parallel lookup and fast 
update. 

With regard to ii), TCAM-based solutions are usually 
adopted in backbone routers. TCAMs are fully associative 
memories that allow a “don’t care” state to be stored in each 
memory cell in addition to 0s and 1s. One TCAM access can 
finish one routing lookup operation while software-based 
solutions might need multiple memory accesses. Therefore, 
TCAM-based solutions are much faster and widely used for 
the routing lookup nowadays. However, the TCAM-based 
solutions are of high power consumption and cost. In order 
to achieve power efficiency, F. Zane et al. proposed a bit-
selection architecture [9], which hashes a subset of the 
destination address bits to a TCAM partition, thus making 
TCAM-based routing table power efficient. This algorithm is 
referred to as ID-bit partition algorithm in this paper. It only 
concentrates on reducing power consumption, but cannot 
accelerate routing lookup. 

Take an Ethernet link with 400Gbps for example, 
suppose each packet is at its minimum size of 64 bytes, 
routers should complete a packet lookup every 1.28ns 
theoretically, while the common TCAM runs at around 166 
MHz. Therefore, parallel lookup with multiple TCAMs is 
destined if TCAM solution is adopted. Towards this target, 
previous works have proposed two mechanisms: Kai’s 
algorithm [10] and Dong’s algorithm [3]. 

In [10], Kai Zheng et al. proposed a TCAM-based 
parallel architecture, which employs an intelligent 
partitioning algorithm, takes advantage of the inherent 
characteristics of Internet traffic, and increases packet 
forwarding rate multiple times over traditional TCAMs. 
Power consumption is also reduced by ID-bit partition 
algorithm. In order to achieve load balancing, Kai Zheng et 
al. added 25% redundant prefixes to the system based on the 
long period statistical results. For convenience, this 
algorithm is referred to as Statistical Load balancing Parallel 
Lookup (SLPL) in this paper. 

However, according to the data mining results in [3], the 
average overall bandwidth utilization was low but the 
Internet traffic could be very bursty. Hence, during bursty 
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periods, mapping routing table partitions into TCAM chips 
based on long-term traffic distribution observations cannot 
balance the workload of individual TCAM chip effectively. 
Therefore, the redundant prefixes should be dynamic 
adjusting, thus Dong Lin et al. proposed a power-efficient 
parallel TCAM-based lookup engine with a distributed 
logical Caching scheme for dynamic Load balancing Parallel 
Lookup (CLPL), which is referred to as CLPL in this paper. 
By using logical caches, the traffic can be allocated to each 
TCAM relatively evenly. Unfortunately, CLPL doesn’t cover 
routing compression and update, and its lookup mechanism 
can also be improved to some extent.  

With regard to iii), current solutions mostly either only 
focuses on i), or only on ii), but seldom emphasize update, 
maybe because the update was not so frequent before. 
However, according to our data mining results, the update 
issue is becoming more and more serious: the received 
updates messages of the backbone routers have reached 35K 
per second in the traffic peak, which will potentially make 
the traditional algorithm not applicable.  

The system performance will be optimized, only if the 
three issues are solved simultaneously. In order to achieve 
this goal, there are still several aspects which need to be 
improved. 

1) The routing table should be compressed to reduce 
hardware cost. 

2) The amount of redundant prefixes should be further 
reduced. 

3) The frequent interactions between data plane and 
control plane should be avoided. 

4) The update algorithm should be studied profoundly. 
Towards the above four targets, we propose a complete 

set of solutions -- CLUE. CLUE consists of a routing table 
compression algorithm (which leverages to our previous 
work, ONRTC), an improved parallel lookup mechanism 
based on CLPL, and a new incremental update mechanism, 
which involves the trie, TCAM and redundant prefixes 
update. The design philosophy of CLUE is that we should 
not view the three issues isolatedly and statically, so as to 
avoid one-sidedness. In other words, only an organic 
combination of the three aspects can make the forwarding 
plane of routers work well. 

The first part of CLUE, i.e., the previously proposed 
ONRTC algorithm [2], compresses the routing table size to 
70% of its original size. More importantly, it benefits the 
second and the third part greatly, for prefix overlap is 
eliminated. 

The second part of CLUE is an improvement of CLPL. 
After compressed by ONRTC, the routing table is not 
overlapped any more, and thus a lot of advantages show up: 
1) the domino effect in the TCAM update process will never 
happen again; 2) the priority encoder is no longer needed -- 
this not only reduces hardware cost, but also reduces the 
latency of TCAM lookup; 3) TCAM partitions can be split 
exactly evenly without redundancy; 4) The compression has 
saved a part of TCAM’s hardware resource. In addition, we 
make the following improvements: 1) Dynamic Redundancy 
(DRed) i doesn’t cache TCAM i’s prefixes, for TCAM i and 
DRed i will never be looked-up simultaneously, and thus 1/4 

TCAM space can be saved when using four TCAMs; 2) 
because of Longest Prefix Match (LPM), when DRed is 
missed, the destination IP address must be sent to control 
plane to compute the prefix which should be stored in DRed 
by using RRC-ME algorithm [11]. Because overlap is 
eliminated by ONRTC, RRC-ME algorithm is no longer 
needed in CLUE. We just need to put the prefixes which are 
hit in the TCAM into DRed. Therefore, the interactions 
between control plane and date plane caused by DRed update 
can be totally avoided. 

The third part of the CLUE is a brand new whole update 
algorithm, including trie update, TCAM update, and DRed 
update. In order to evaluate the update performance 
accurately and objectively, TTF (Time to Fresh) is defined 
here. TTF means the average computing time to update a 
message, which includes TTF1 (TTF-trie): update time of the 
trie, TTF2 (TTF-TCAM): update time of TCAM, and TTF3 
(TTF-DRed): update time of redundant prefixes. TTF 
indicates a router’s sensitivity to the changes of the network 
state. The smaller the TTF is, the more sensitive the router 
will be. 

To summarize, the primary contributions of this paper lie 
in the following aspects: 

 We propose an integrated problem – CLUE and a 
solution set with the same name. CLUE solves the above 
three issues simultaneously, improving the system 
performance.  

 We present a complete mathematical proof to bound 
the speedup factor of CLUE, and verify the mathematical 
conclusion by experimental results. 

The remaining parts of the paper are organized as follows. 
Section II surveys the related work. An improved mechanism 
based on CLPL is elaborated in Section III. Section IV 
illustrates the fast incremental update algorithm of the whole 
system. Extensive evaluation on CLUE over a large-sized 
real trace is conducted in Section V. Finally we conclude this 
paper in Section VI. 

II. RELATED WORK 
As mentioned above, three major issues are involved: 

routing table compression, routing lookup, and update. 

A. Compression Algorithm 
With respect to compression algorithm, many researches 

have been conducted to compress routing table, and the 
representative papers are [5-8], which only focus on routing 
table compression. These approaches will meet the following 
difficulties when being applied to TCAM lookup, given they 
don’t solve the prefix overlap:  

1) Layout in TCAM: Prefixes must be stored in TCAM 
ordered by their length, and a priority encoder is required to 
choose the longest one. 

2) Update Handling: When update messages arrive, many 
prefixes will probably be moved to idle space to hold the 
new inserted ones, we call this domino effect. Some 
researches manage to resist domino effect, but redundant 
prefixes are unavoidably involved.  

3) Power Consumption: one major shortcoming of 
TCAM is its high power consumption. An effective solution 
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is TCAM partition. There are mainly two partition 
algorithms: ID-bit partition [9, 10] and range partition [14], 
but [14] does not give the details to determine the partitions. 
Therefore, Dong Lin et al. proposed sub-tree partition [3] to 
implement range partition. ID-bit partition algorithm cannot 
split the table evenly. Sub-tree partition can work better, but 
it will introduce redundant prefixes.  

If prefix overlap is eliminated, the above problems can be 
handled gracefully: 1) prefixes can be arbitrarily stored in 
TCAM; 2) the priority encoder is not needed any longer; 3) 
domino effect will never happen; 4) TCAM can be split 
strictly evenly without any redundancy. 

There are mainly two approaches to reduce prefix overlap 
[12, 13]. In [12], the routing table is divided into two parts: 
the overlapping part and the non-overlapping part, which can 
only reduce overlap. To the best of our knowledge, only leaf-
pushing algorithm proposed in [13] can totally eliminate 
overlap, but it will substantially incur the expansion of 
routing table. 

Therefore, we have proposed ONRTC algorithm to 
construct optimal non-overlap routing tables, which is 
detailed in [2]. 

B. Routing Lookup Algorithm 
With respect to routing lookup, R. Panigrahy et al. in [14] 

proposed a parallel searching method by employing multiple 
TCAM chips without any load balancing mechanisms, this 
approach cannot fully increase the speedup factor. That 
explains when eight TCAM chips were employed for parallel 
lookup operations, but only a speedup factor of five was 
achieved, given the lookup requests were not evenly 
distributed. In pursuit of an ultra-high lookup throughput, 
Kai Zheng et al. proposed a load balancing mechanism [10] 
based on ‘pre-selected’ redundant prefixes. The authors 
assume that the lookup traffic distribution over IP prefixes 
can be derived from the traffic traces statistically in a long 
period. Then a greedy algorithm with 25% more TCAM 
entries is proposed to optimally balance the traffic among the 
four TCAMs. The problem lies: 1) different network 
segments exhibit different traffic patterns, it's hard to come 
up with a universal law; 2) statistics in the past does not 
predict the future well. Thus in the worst case, when the 
traffic is bursty, the average throughput may decrease a lot.  

Based on the data analysis collected from [15], Dong Lin 
et al. observed that the average overall bandwidth utilization 
was low but the Internet traffic could be very bursty. In order 
to handle the worst case, CLPL uses logical caches (which 
actually mean Dynamic Redundancy (DRed)) in place of the 
static redundant prefixes to achieve dynamic load balancing.  

C. Incremental Update Mechanism 
Speaking of incremental update, there are three aspects: i) 

trie update; ii) TCAM update; ii) DRed update, if DRed is 
used. 

As for trie update, because SLPL and CLPL adopt no 
compression algorithm, thus their trie update is fast; while 
ONRTC algorithm is adopted in this paper, and the detailed 
incremental update algorithm is elaborated in [2]. 

As for TCAM update, one big obstacle is the domino 

effect, and many researchers strive to reduce it. In [16], the 
routing table is split into partitions according to the next hop. 
Each partition holds a collection of all the prefixes which 
share the same next hop, thus there is no need to keep the 
prefixes sorted in one partition. In this way, domino effect 
can be reduced. However, more than one prefix will be 
matched, thus the priority encoder is still needed. In addition, 
it cannot achieve power efficiency. In [17], all prefixes are 
split and allocated into different single-match TCAMs based 
on the ancestor-descendant relationship among them. It 
presents an algorithm to guarantee that each single-match 
TCAM generates at most one match for a given destination 
IP address. However, when a new prefix is inserted, each 
single-match TCAM may be required to move some of its 
existing prefixes to another TCAM in order to maintain a 
disjoint set. What’s worse, power efficiency cannot be 
achieved. 

As for DRed update, CLPL adopts LRU policy; as for 
routing update, SLPL and CLPL didn’t mention it. Therefore, 
Bin Zhang et al. in [12] changed CLPL in the following two 
aspects: 

1) A TCAM-chip is used as a DRed in place of CLPL’s 
four logical caches. It is evident that this change will degrade 
the whole system’s performance. This can be confirmed 
again by their experimental results in Figure 8 in [12]. The 
experiments use 12 TCAM chips, and half of the 
experimental results show that the speedup factor is less than 
11, while 11 is the result of CLPL’s worst case.  

2) Bin Zhang et al. argued that SLPL and CLPL 
neglected an important factor—the update mechanism. Thus 
Bin Zhang et al. put the overlapping part of prefixes on the 
top of the TCAM and at the bottom of the next TCAM, while 
putting the non-overlapping part in the middle of the TCAM. 
This approach can reduce the domino effect to a certain 
extent. In contrast, in our paper we eliminate domino effect 
totally. 

Therefore, we propose CLUE to handle these issues. As 
far as we know, this is the first effort on a full-dimensional 
system optimization for the three major routing table 
problems. 

III. PARALLEL ROUTING LOOKUP MECHANISM 
With regard to parallel lookup, the naive idea is to 

duplicate the routing table multiple copies while using 
round-robin lookup. This is obvious of expensive hardware 
cost and high power consumption. A smart idea [3, 10] is to 
divide the routing table into small partitions (by using 
partition algorithm), which are then allocated into TCAMs. 
A corresponding load balancing mechanism should be 
implemented, for the traffic load of each TCAM is not 
evenly distributed among TCAMS. The differences of 
different parallel lookup mechanisms lie in the partition 
algorithm, lookup mechanism, and redundancy mechanism 
for load balancing, which are detailed below. 

A. Partition Algorithm 
CLPL’s sub-tree partition [3] algorithm outperforms 

SLPL’s ID-bit partition algorithm [10]. Unfortunately, they 
both introduce redundancy. In our research, because prefix 
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overlap is eliminated by ONRTC, partition algorithm of 
CLUE becomes very simple, and the redundancy is no longer 
needed. The new partition algorithm of CLUE consists of 
two steps: 

Step I: compute the partition size. Suppose the size of 
routing table is M and the partition count is n, then the size of 
each partition is M/n. 

Step II: traverse the trie by inorder, and put every M/n 
prefixes to each TCAM partition. 

It can be concluded that our new partition algorithm is 
much more simple and faster than ID-bit partition algorithm 
and sub-tree partition algorithm while guaranteeing high 
memory utilization. 

B. Parallel Lookup Mechanism 
The detailed implementation architecture of the parallel 

lookup engine is presented in Figure 1 (it appears originally 
in Figure 9 in [3]), which is an improved architecture based 
on CLPL mechanism. We here further make improvements 
and the new mechanism working process is described below 
(each step is marked by the number in Figure 1):  

Step I, when an IP packet arrives, its destination IP 
address is sent to the Indexing Logic. 

Step II, the Indexing Logic returns a partition number 
which tells the ‘home TCAM’ containing the matching 

prefix.  
Step III, a tag (the sequence number) is attached to the IP 

address, since this mechanism may cause disorder. 
Step IV, the IP address with the tag and partition number 

is delivered into the Adaptive Load Balancing Logic. 
Step V, this is the most important step of our mechanism 

-- Dynamic Redundancy for load balancing. To be specific, 
each TCAM is split into partitions, and one partition is used 
as dynamic redundancy (DRed), as shown in Figure 1. The 
work mechanism of Dynamic Redundancy for load 
balancing is as follows: 

a) If the queue of its home TCAM is not full, the 
incoming IP addresses will be looked-up in its home TCAM;  

b) If the queue of its home TCAM is full, then the 
incoming IP addresses will be sent to the idlest queue. One 
important point is worth being mentioned: this kind of IP 
addresses will be only looked-up in the corresponding DRed, 
NOT the home TCAM. No IP address will be looked-up both 
in home TCAM and the corresponding DRed. So in CLUE, 
DRed i doesn’t store TCAM i’s prefix. By this way, CLUE 
needs smaller redundancy, but has the same hit rate with 
CLPL. 

c) If the incoming IP address is missed in DRed, it will 
be sent back and repeat the above a). 

 
Figure 1.  Improved parallel lookup mechanism 

C. Novel Dynamic Redundancy Mechanism 
 

To achieve load balancing, SLPL adopts statistical 
redundancy, while CLPL adopts logical caches. For CLPL, 
as mentioned above, no IP address will be looked-up in both 
home TCAM and the corresponding dynamic redundancy 
(DRed). As a result, this is NOT really a cache, and we use 
the word ‘DRed’ in place of CLPL’s logical caches, but the 
DRed is updated by the cache mechanism. According to the 
following analysis and experimental results in Section V, 
DRed outperforms logical caches a lot. 

Generally speaking, cache mechanisms can be divided 

into two categories: caching destination addresses (IPs) [18-
20] and caching prefixes [21]. The results in these papers 
have demonstrated that caching prefixes is more efficient, 
and this is also in accord with our experimental results. 
Therefore, we adopt caching prefixes, as CLPL did. 

However, one big obstacle of caching prefix is prefix 
overlap. Because of LPM, if an inner node is matched, the 
corresponding prefix cannot be sent to DRed. 

For example, as shown in Figure 2, a prefix = 100000 is 
looked-up in the home TCAM, and the LPM result returns p 
(p=1*). However, p cannot be sent to DRed, because its child 
node q owns a different next hop. It is obvious that p’=100* 
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should be sent to DRed. This approach is called RRC-ME 
algorithm [21], which is adopted in CLPL. 

 
Figure 2.  RRC-ME algorithm 

For RRC-ME algorithm, one important issue is worth 
being mentioned here. Although RRC-ME algorithm is 
simple, its update algorithm is not an easy task. The update 
algorithm mentioned here means that when the routing table 
updates, the DRed must update as well. This process must 
visit SRAM several times, which incurs additional overhead. 

In addition, CLPL adopts RRC-ME algorithm, which 
causes frequent interactions between data plane and control 
plane, while CLUE doesn’t, and the details are as follows. 

 
Figure 3.  The DRed update process of CLPL’s mechanism 

 
Figure 4.  The DRed update process of CLUE’s mechanism 

The DRed update process of CLPL is shown in Figure 3. 
If an incoming IP is looked-up in TCAM1, then the LPM 
prefix is 1*. Prefix 1* must be sent to control plane, which 
executes RRC-ME algorithm by traversing the trie stored in 
SRAM, and returns 100*. Then 100* is sent to data plane, 
and is inserted into the four logical caches. It can be noted 
that the DRed update process will execute RRC-ME 
algorithm, and frequent interactions happen, disturbing 
routing lookup a lot. 

As aforementioned, DRed i and TCAM i will never be 
looked-up simultaneously, thereby CLUE reduces CLPL’s 

DRed size by the rule that DRed i doesn’t cache TCAM i’s 
prefixes, but the hit rate doesn’t decline. With regard to the 
four TCAM chips, the DRed size of CLUE is reduced into 
3/4 of that of CLPL. 

Because overlap is eliminated, RRC-ME algorithm is no 
longer involved. Our new DRed process is shown in Figure 4. 
If an incoming IP address is looked-up in TCAM1, the result 
of LPM is 100*, then 100* is sent to data plane directly, and 
is inserted into the other three DReds. As a result, control 
plane will not be involved in the process of DRed update 
process. In this way, the update process of DRed is faster and 
more efficient. 

To sum up, our new DRed Mechanism can achieve 
smaller DRed size and avoid frequent interactions between 
data plane and control plane. 

D. Lower Bound of the System Performance 

 
Figure 5.  Parallel lookup in the worst case 

With regard to the lower bound of the system 
performance, Dong Lin et al. has presented a formal 
mathematical proof, which is flawed. Therefore, a complete 
formal mathematical proof is given here, and the proof 
conclusion is in accord with the corresponding experimental 
results. 

Our deduction is under the following two premises:  
1) The update cost is ignored. 
2) The TCAM1 is always working.  
The two premises are practically feasible. Regarding 

premise 1), Dong Lin et al. show that when the cache size is 
set to 1024 and only one cache-missed element is updated 
within 5000 clock cycles, the system can still easily achieve 
100% throughput [3]. In addition, each routing update only 
causes one shift in TCAM, that is, O(1) time complexity by 
CLUE. Therefore, the time cost of routing update is 
negligible. Premise 2) holds true via a policy that keeps the 
queue of TCAM1 never empty. 

In the worst case of this parallel system, all the traffic is 
delivered to a single TCAM, which is TCAM1 in Figure 5. It 
suggests that TCAM2~TCAMN-1 is idle, only DRed2~ 
DRedN-1 are still working. The definitions of the symbols are 
described below: 

N means the number of TCAM chips used in this system; 
R means the maximum input traffic; 
E means the processing ability of each TCAM; 
u means the percentage of TCAM1’s processing ability 

used to handle the traffic which goes directly to TCAM1; 
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1-u means the percentage of processing ability used to 
handle the packets missed in DRed; 

h means the hit rate of the DRed; 
t means the speedup factor of this system. 
Firstly, it is easy to get each symbol’s range: 

�� � � � �� � � � �� 	 
  

Secondly, when all TCAMs work at their best, the system 
can handle the maximum workload R. � � 
��� � �� � ��� � �� � 
 � � � � � �����������������������������������
������������������������������������������������ 
 � � � ���������������������������������� 

Thirdly, TCAM1 preserves 1-u processing ability to 
handle DRed-missed traffic. � � 
��� � ��� � �� � �� � �� � ���� � � � 
 � �
 � � � 
 � �� � ��

� � 
 � �
 � � � 
 � �� � � � � � � � �� � � ����������������������������������
��������������������������������������������� � � 
 � �
 � ���������������������������������� 
According to (1) and (3), we get that ������������������������������������
 � �� � ��� � ����������������������������������� 
Then 
 � � � � 

As long as 

� � 
 � �
 � � 

According to [18-21] and our experiment results, the hit 
rate of (N-2)/(N-1) can be easily achieved. 

According to (5), it can be concluded that in the worst 
case � � 
 

It suggests that in real traffic, 
 � �� � ��� � � always 
holds true. This conclusion is in consistent with subsequent 
experimental results (see Figure 16). 

IV. THE NEW INCREMENTAL UPDATE MECHANISM 

When an update message arrives, the routing table should 
be updated as fast as possible. Specifically, the whole update 
process can be divided into three steps (see Figure 6): 1) trie 
update; 2) TCAM update; 3) DRed update. When the three 
steps are all finished, the update message takes into effect. 
Then how to evaluate the performance of incremental update? 
Time to Fresh (TTF) is defined in this paper, including TTF1 
(TTF-trie), TTF2 (TTF-TCAM), and TTF3 (TTF-DRed).  

The update involved in TCAM will interrupt routing 
lookup, resulting in decrease of lookup rate. Therefore, TTF2 
and TTF3 are more important than TTF1. 

 

Figure 6.  The whole incremental update process of CLUE. 

A. Trie Update 
The performance of trie update is evaluated by TTF1 

(TTF-trie), which means the average computing time of 
updating the trie. If no compression algorithm is adopted, 
TTF1 is minimal, and is regarded as ground-truth. 

Because CLPL mechanism adopted no compression 
algorithm, thus its TTF1 is minimal, and TTF1-CLPL is 
defined to represent its TTF-trie. To be different, we adopt 
previously proposed ONRTC algorithm to compress the trie, 
and the update time is represented by TTF1-CLUE. The 
process of incremental update always keeps the trie non-
overlap. Experimental results show that TTF1-CLUE is a 
little bit longer than TTF1-CLPL. 

B. TCAM Update 
Generally speaking, in order to reduce domino effect, the 

common method is to keep some redundancy at the end of 
TCAM. A naive solution [22] is shown in Figure 7(a). When 
a prefix is inserted, it will move all the following pre�xes 
one by one, thus has a time complexity O(n) in the worst 
case, which is clearly undesirable. 

                     
(a) a naive solution                    (b) a classical solution 

Figure 7.  Two approaches to reduce domino effect 

A classical solution [22] is based on the observation that 
two pre�xes with the same length can be placed 
interchangeably. This suggests that the domino effect can be 
reduced. As shown in Figure 7(b), there is only a partial 
ordering constraint among all pre�xes. This approach 
enables an empty memory location to be found in at most 32 
prefix shifts. This is a classical method without extra 
overhead, thus we assume it is adopted in CLPL, and is 
selected to be compared with CLUE. Experimental results 
show that this solution needs 14.994 shifts in average. 

The previous work [3, 10] didn’t emphasize incremental 
update too much. After overlap is eliminated, the updating 
method of TCAM becomes clear and simple: when inserting 
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a prefix, just write it to the end of TCAM; when deleting a 
prefix, just cut the last prefix to replace it. Therefore, CLUE 
needs one shift at most to handle an update message. 

The performance of TCAM update is evaluated by TTF2 
(TTF-TCAM), which indicates the update time of TCAM. 
Whatever partition algorithms are adopted, TCAM update 
must wait till the trie update is finished. The current partition 
algorithms probably need to change more than one prefix 
when one update message arrives.  

It is obvious that our new TCAM update mechanism is 
much more efficient than all the traditional TCAM update 
mechanisms. This conclusion is consistent with the 
subsequent experimental results. 

C. DRed Update 
After the update of TCAM, in order to guarantee 

synchronization and correctness, the DRed must be updated, 
too. As mentioned above, CLPL adopts RRC-ME algorithm 
and its update algorithm.  

When inserting or deleting a prefix in home TCAM, 
RRC-ME algorithm must look up the trie and find all the 
prefixes which may be changed by this update. During the 
process, SRAM must be visited several times, which is a 
waste of time. 

In contrast, when inserting a prefix in home TCAM, 
CLUE’s DRed needs no change; when deleting a prefix, 
CLUE just lookups it in the DRed. If it exists, just delete it; 
otherwise, do nothing.  

It is obvious that CLUE is much more efficient than 
CLPL in DRed update. This conclusion is also in accord with 
the subsequent experimental results. TTF is the sum of TTF1, 
TTF2, and TTF3. The whole TTF comparison between 
CLPL and CLUE is given in the subsequent experimental 
results. 

V. EXPERIMENTAL RESULT  

A. Experimental Settings 
1) Trace 

TABLE I.  LOCATIONS OF ROUTERS.  

ID Location ID Location
rrc01 LINX, London rrc11 New York (NY), USA
rrc03 AMS-IX, Amsterdam rrc12 Frankfurt, Germany
rrc04 CIXP, Geneva rrc13 Moscow, Russia
rrc05 VIX, Vienna rrc14 Palo Alto, USA
rrc06 Otemachi, Japan rrc15 Sao Paulo, Brazil
rrc07 Stockholm, Sweden rrc16 Miami, USA  

 

The RIB packets are taken from www.ripe.net [1] at 
RIPE NCC, Amsterdam, which collects default free routing 
updates from peers. In order to objectively test the 
performance of ONRTC algorithms, the RIB packets at 8:00 
on October 1 in 2011 from 12 routers are selected.  (There 
are 16 routing tables available in www.ripe.net, but four of 
them don’t update to present). Table I shows the routers’ 
location. 

In the routing update experiment, two traces are selected. 
In order to measure TTF-ratio, the update data from 
2011.10.01/08:00 to 2011.10.02/08:00 is selected.  

With regard to real traffic, trace from [23] is selected. 
The traffic from 20:59 to 21:14 on 2011.02.17 in Chicago is 
downloaded and parsed. 

Our lab has a router prototype with TCAM 
(CYNSE70256) in its linecards. CYNSE70256 supports 
256K entries with 36-bit width. It can operate at a speed of 
up to 41.5 MHz by looking up 36 bit-width entries. It 
suggests that each lookup costs: �� ��!�"#$ % ��&� 

Generally speaking, the update time of each lookup is 
roughly equal to the time of moving a prefix. Therefore, 24ns 
is regarded as the time cost of moving one prefix in TCAM. 

2) Computer Configuration 
Our experiments are carried out on a windows XP sp3 

machine with Pentium (R) Dual-Core CPU 5500@2.80GHz 
and 4G Memory.  

B. Experiments on Compression by ONRTC 

 
Figure 8.  FIB size before and after compression on 12 routers.  

The compression results of ONRTC of 12 routers are 
shown in Figure 8. The taller bars are the original FIB size, 
while the lower bars are the FIB size after compression by 
ONRTC algorithm. According to the results, the compressed 
prefix number is 71% of the original in average, and the 
compression time is around 39 milliseconds.  

 
Figure 9.  partition comparison among the three algorithms. 
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Figure 9 shows the partition results of three algorithms: 
SCPL algorithm, CLPL algorithm, and CLUE algorithm. 
The same experiments are conducted on 12 routers, and only 
one is shown in the figure, given the results are similar. As 
shown in the figure, SCPL cannot split prefixes evenly, and 
CLPL split prefixes evenly at the cost of redundancy. In 
contrast, CLUE splits prefixes evenly with no redundancy, 
with much fewer prefixes in one partition than both SCPL 
and CLPL. Besides, as the number of partitions rises, SCPL 
and CLPL introduces more redundancy (see Figure 6 in [3]), 
while CLUE still has no redundancy. 

C. Experiments on TTF 
The x-axis of Figure 10~14 stands for the arrival time of 

update messages. For example, ‘201010231945’ means 
2010.10.10/23:19:45.  

 
Figure 10.   TTF1 comparison between CLPL and CLUE. 

Figure 10 shows TTF1 (TTF-trie) of CLUE (ONRTC) 
and CLPL (ground-truth). It can be observed that TTF1 of 
CLUE is a little longer than ground-truth. TTF1 of CLUE 
ranges from 0.1924 microseconds to 0.3574 microseconds 
with a mean of 0.2210 microseconds. Because TTF1 doesn’t 
interrupt routing lookup, a litter bigger TTF1 of CLUE 
doesn’t influence the system performance. 

 
Figure 11.  TTF2 comparison between CLPL and CLUE. 

Figure 11 shows TTF2 (TTF-TCAM) of CLUE and the 
general method (see Figure 7(b)). As mentioned in 
experimental settings, 24ns is regarded as the time cost of 
moving one prefix in TCAM. TTF2 of CLPL ranges from 
0.3558 microseconds to 0.3782 microseconds with a mean of 
0.3598 microseconds. In contrast, as mentioned above, 
CLUE needs only one shift (O(1)) to handle an update 
message, which means 0.024 microseconds for each update.  

 
Figure 12.  TTF3 comparison between CLPL and CLUE. 

To evaluate the TTF3, we plot TTF-DRed in Figure 12. 
TTF3 of CLUE still maintains 0.024 microseconds; while 
TTF3 of CLPL ranges from 0.1802 microseconds to 0.2878 
microseconds with a mean of 0.1993 microseconds. In other 
words, TTF3 of CLPL is 8.3 times of that of CLUE in 
average, and 11.99 times in the worst case.  

 
Figure 13.  TTF2+TTF3 comparison between CLPL and CLUE. 

As aforementioned, TTF2 and TTF3 are more important 
than TTF1, because TTF1 is the time cost in the control 
plane which doesn’t interrupt routing lookup. In other words, 
TTF2 and TTF3 influence the system performance much 
more than TTF1. Therefore, the comparison of TTF2+TTF3 
between CLPL and CLUE is shown in Figure 13. Results 

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TT
F1

   
(m

ic
ro

se
co

nd
)

Time

 TTF1-CLPL
 TTF1-CLUE

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

TT
F2

   
(m

ic
ro

se
co

nd
)

Time

 TTF2-CLPL
 TTF2-CLUE

20
11

01
01

 1
65

0
20

11
01

01
 1

74
0

20
11

01
01

 1
83

0
20

11
01

01
 1

92
0

20
11

01
01

 2
01

0
20

11
01

01
 2

10
0

20
11

01
01

 2
15

0
20

11
01

01
 2

24
0

20
11

01
01

 2
33

0
20

11
01

02
 0

02
0

20
11

01
02

 0
11

0
20

11
01

02
 0

20
0

20
11

01
02

 0
25

0
20

11
01

02
 0

34
0

20
11

01
02

 0
43

0
20

11
01

02
 0

52
0

20
11

01
02

 0
61

0
20

11
01

02
 0

70
0

20
11

01
02

 0
75

0
20

11
01

02
 0

84
0

20
11

01
02

 0
93

0
20

11
01

02
 1

02
0

20
11

01
02

 1
11

0
20

11
01

02
 1

20
0

20
11

01
02

 1
25

0
20

11
01

02
 1

34
0

20
11

01
02

 1
43

0
20

11
01

02
 1

52
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 

TT
F3

   
(m

ic
ro

se
co

nd
)

 TTF3-CLPL
 TTF3-CLUE

Time

20
11

01
01

 1
65

0

20
11

01
01

 1
74

0

20
11

01
01

 1
83

0

20
11

01
01

 1
92

0

20
11

01
01

 2
01

0

20
11

01
01

 2
10

0

20
11

01
01

 2
15

0

20
11

01
01

 2
24

0

20
11

01
01

 2
33

0

20
11

01
02

 0
02

0

20
11

01
02

 0
11

0

20
11

01
02

 0
20

0

20
11

01
02

 0
25

0

20
11

01
02

 0
34

0

20
11

01
02

 0
43

0

20
11

01
02

 0
52

0

20
11

01
02

 0
61

0

20
11

01
02

 0
70

0

20
11

01
02

 0
75

0

20
11

01
02

 0
84

0

20
11

01
02

 0
93

0

20
11

01
02

 1
02

0

20
11

01
02

 1
11

0

20
11

01
02

 1
20

0

20
11

01
02

 1
25

0

20
11

01
02

 1
34

0

20
11

01
02

 1
43

0

20
11

01
02

 1
52

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TT
F2

+T
TF

3 
  (

m
ic

ro
se

co
nd

)

Time

 (TTF2+TTF3)-CLPL
 (TTF2+TTF3)-CLUE

685



 
 

show that TTF2+TTF3 of CLUE is 4.29% of CLPL in 
average and 3.65% in the worst case. 

 
Figure 14.  TTF1+TTF2+TT3 comparison between CLPL and CLUE 

TTF, which is the sum of TTF1, TTF2, and TTF3, 
measures a router’s sensitivity to the changes of the network 
state. Figure 14 shows the TTF of CLPL and CLUE. In the 
figure, the TTF of CLPL ranges from 0.6303 microseconds 
to 0.8342 microseconds with a mean of 0.6664 microseconds. 
In contrast, TTF of CLUE is only 0.2690 microseconds in 
average. In other words, TTF of CLPL is 234% of that of 
CLUE. 

D. Experiments on Parallel Lookup 

TABLE II.  WORKLOAD ON DIFFERENT PARTITIONS AND TCAM 
CHIPS. 

2 38.103.176.0 61.91.89.255 21.92%
12 97.69.128.0 119.46.79.255 10.57%
20 194.133.118.0 196.11.124.255 9.18%

23 202.30.78.0 203.128.191.255 4.52%
31 216.207.89.0 255.255.255.255 3.32%
8 72.9.88.0 77.79.211.255 3.13%

16 168.87.144.0 183.87.78.255 0.81%
13 119.46.80.0 134.75.216.255 0.72%
5 65.68.16.0 66.133.181.255 0.70%

11 91.209.9.0 97.69.127.255 0.08%
10 85.95.88.0 91.209.8.255 0.07%
0 0.0.0.0 12.177.231.255 0.00%

4 0.16%

…

2 17.43%

…

3 4.54%

…

1 77.88%

…

#of
Bucket Range Low Range High

Percent of
partit ion

Percent of
TCAM

# of TCAM
chips

 
 
As shown in TABLE II, routing table from rrc01 is split 

into 32 partitions evenly by CLUE. After test by real traffic, 
the workload of each partition is shown in Column ‘Percent 
of partition’. It can be observed that workload among 
different partitions varies a lot. To simulate bursty traffic, the 
partitions are sorted by the workload percentage in 

descending order. The first 8 partitions are mapped to 
TCAM1, while the second, third and the fourth 8 partitions 
are mapped to TCAM 2, 3, 4, respectively. This is a possible 
mapping situation with extremely uneven workload among 
TCAMs. 

 

Figure 15.  Load balancing of workload distribution by CLUE. 

The grey bars labeled ‘Original’ in Figure 15 show the 
extremely uneven workload distribution of Table II. An 
experiment using this distribution is designed to evaluate the 
function of CLUE’s load balancing. In the simulation 
process, each TCAM takes 4 clocks to process a packet, 
while a packet arrives per clock. The FIFO is set to 256 and 
redundancy size is set to 1024 prefixes. The green bars show 
the traffic distribution balanced by CLUE. It can be seen that 
the green bars labeled ‘CLUE’ are much more even than 
‘Original’. It can be concluded that CLUE can achieve 
excellent load balancing performance even in the worst case. 

 

Figure 16.  Speedup factor comparison between CLPL and CLUE and the 
worst case 

Figure 16 shows the relationship between Hit Rate and 
Speedup Factor. It is a comparison among CLPL, CLUE, 
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and the worst case in theory. The dotted lines of CLPL and 
CLUE are the results of cubic curve fitting. Both CLPL and 
CLUE are much better than the worst case, which is 
consistent with previous theory results. This figure suggests 
that the speedup factor rises as hit rate rises. In terms of 
CLPL and CLUE, the same Speedup Factor will be achieved 
by the same hit rate, because they almost overlap. 

 

Figure 17.  Hit rate comparison between CLPL and CLUE.  

The relationship between DRed Size and Hit Rate is 
plotted in Figure 17. The top curve is the result of CLUE, 
and the other one belongs to CLPL. It indicates that CLUE 
achieves much higher Hit Rate than CLPL with the same 
DRed Size. Whereas Figure 16 shows Hit Rate determines 
Speedup Factor, then it can be indirectly concluded that 
CLUE achieves much higher Speedup Factor than CLPL 
with the same DRed Size. 

VI. CONCLUSIONS 
Due to the explosive increase of Internet volume and 

traffic, routing tables in backbone routers have been 
increasing approximately 15% in size annually [4]. 
Meanwhile, the link transmission speed of backbone routers 
has increased to tens of gigabit-per-second. Consequently, 
the backbone routers are facing CLUE: routing table 
Compression, fast routing Lookup, and fast incremental 
UpdatE. 

Because traditional algorithms seldom cover the three 
problems simultaneously, we propose a complete set of 
solutions -- CLUE. The design philosophy of CLUE is that 
we should not view the three problems isolatedly and 
statically, avoiding one-sidedness. Firstly, CLUE adopts 
ONRTC algorithm, which supports parallel routing lookup 
and fast incremental update. Secondly, several improvements 
are made based on CLPL mechanism, achieving lower 
hardware cost. Thirdly, a novel whole update algorithm   
TTF is defined and evaluated, including TTF-trie, TTF-
TCAM, and TTF-DRed. Extensive experimental results 
show that CLUE needs much less hardware resource and 
shorter update time to achieve the same speedup factor 

compared with CLPL. 
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