一、概念题（共32分）
1. Availability, reliability (2pt)
2. Recovery line (2pt)
3. Scalability (2pt)
4. Name, identifier, address (2pt)
5. Monotonic-write consistency (2pt)
6. Happen-Before (HB) Relation (2pt)
7. Vector clocks (2pt)
8. Goals of distributed systems (2pt)
9. Transparency, different types of transparency (2pt)
10. A finite machine (2pt)
11. A virtual machine (2pt)
12. Persistent communication (2pt)
13. Isochronous (2pt)
14. Data-centric consistency, client-centric consistency (2pt)
15. Atomic multicast (2pt)
16. Virtually synchronous (2pt)

二、简答题（共38分）
1. Q: In the case of continuous consistency, let $TW(i, j)$ be the writes executed by server S_i that originated from server S_j. $TW(i, i)$ represents the aggregated writes submitted to S_i. Our goal is to for any time t, to let the current value v_i at server S_i, deviate within bounds from the actual value $v(t)$ of x. In any case, when a server S_i propagates a write originating from S_j to S_k, the latter will be able to learn about the value $TW(i, j)$ at the time the write was send. In other words, sk can maintain a view $TW_k(i, j)$ of what it believes S_i will have as value for $TW(i, j)$.

Show that, having a server S_k advance its view $TW_k(i, k)$ whenever it receives a fresh update that would increase $TW(k, k) - TW_k(i, k)$ beyond $\delta_i / (N - 1)$, ensures that $v(t) - v_i \leq \delta_i$. (5pt)

2. Q: Consider a Chord DHT-based system for which k bits of an m-bit identifier space have been reserved for assigning to superpeers. If identifiers are randomly assigned, how many superpeers can one expect to have in an N-node system? (3pt)

3. Q: In this problem you are to compare reading a .le using a single-threaded file server and a multithreaded server. It takes 15 msec to get a request for work, dispatch it, and do the rest of the necessary processing, assuming that the data needed are in a cache in main memory. If a disk operation is needed, as is the case one-third of the time, an additional 75 msec is required, during which time the
thread sleeps. How many requests/sec can the server handle if it is single threaded? If it is multithreaded? (3pt)

4. Q: Consider an unstructured overlay network in which each node randomly chooses c neighbors. If P and Q are both neighbors of R, what is the probability that they are also neighbors of each other? (3pt)

Consider again an unstructured overlay network in which every node randomly chooses c neighbors. To search for a file, a node floods a request to its neighbors and requests those to flood the request once more. How many nodes will be reached? (5pt)

5. Q: Explain the principle of an epidemic protocol. (5pt)

6. Q: Explain the decentralized mutual exclusion algorithm (Lin et al. (2004)’s voting algorithm). (3pt). What is the probability of violation? (5pt)

7. Q: Scalability can be achieved by applying different techniques. What are these techniques? (3pt)

8. Q: List pitfalls when developing distributed systems. (3pt)