Chapter 9: Name Services

- Introduction
- Name services and the Domain Name System
- Directory and discovery services
- Case study of the Global Name Service
- Case study of the X.500 Directory Service
- Summary

What is Name Service?

- A distinct service that is used by client to obtain attributes such as the addresses of resources or objects when given their names
- Name management is separated from other services
Name and Address

- **Name**
 - A human readable string
- **Identifier**
 - names that are interpreted only by programs.
- **Address**
 - Bits used by machines to locate an object
- **Bind**
 - Association between a name and an address
- **Resolve**
 - Translate from a name to an address
 - **Example**

Attributes

- **Value of a property associated with an object**
- **DNS**
 - IP address
- **X.500**
 - Person’s email address and telephone number
Uniform Resource Identifiers

- **URL (Uniform Resource Locator)**
 - Addresses of web resources
 - Dangling problems: a resource may be moved

- **URN (Uniform Resource Name)**
 - Intend to solve the dangling problems
 - E.g. urn:ISBN:0-201-62433-8
 - Urn:net.pku.edu.cn:TR2004-10
 - URN lookup service: mapping from URN to URL

Uniform Resource Identifiers

- **URC (Uniform Resource Characteristics)**
 - A description of a Web resource (metadata)
Chapter 9: Name Services

- Introduction
- Name services and the Domain Name System
- Directory and discovery services
- Case study of the Global Name Service
- Case study of the X.500 Directory Service
- Summary

Two motivations:

- Unification
 - It is convenient to manage the resource by using the same naming schema

- Integration
 - Separate from the special application system
 - Without a common name service, the administrative domain may use entirely different naming conventions
General name service requirements

• Scalability
 – Arbitrary number of names
 – Arbitrary number of administrative organizations

• Flexibility
 – A long lifetime
 – Accommodate variations on the organization of the set of names

General name service requirements (2)

• High availability
 – Most other systems depend upon it

• Fault isolation
 – Isolate location failures from entire service

• Tolerance of mistrust
 – Not all clients are trusted by all components of the system
Name spaces

- A collection of all valid names recognized by a particular service
- Require a syntactic definition
- E.g. domain name tree of DNS
- E.g. directory tree of a file system
- E.g. flat set of numeric or symbolic identifiers.

Internal structure of a name

- Hierarchic structure, e.g. /etc/passwd
 - Resolve relative to a separate context
 - Potentially infinite
 - Different context managed by different people
- Alias
 - The reason for having aliases is to provide for transparency
 - www.pku.edu.cn(xxx.pku.edu.cn)
Naming domain

• A single administrative authority
 – A name space for which there exists a single authority
 – E.g. pku.edu.cn
 – E.g. cs.pku.edu.cn

• Be stored in a separated server
 – Naming domains are in general stored in different name servers

• Domains, domain’s name domain names

Combining name spaces

• Homogeneous/heterogeneous name spaces
 – DNS is Homogeneous
 – URL is heterogeneous

• Merging
 – E.g. mount file system in Unix and NFS
 – E.g. create a higher-level root context

• Heterogeneity
 – DCE name:
 /.../des.qmw.ac.uk/principals/Jean.Dollimore
 cell principals
 /.../des.qmw.ac.uk/files/pub/reports/TR2000-99
 cell files
Customizing name spaces

- One file with different names
 - E.g. a NFS directory mounted on different machines
- One name refer to different files
 - E.g. install configuration for multi-platform
- One name space per people
 - E.g. Plan 9

Name resolution

- Name space is partitioned in different name servers
- Iterative navigation
 - Client controlling
 - E.g., DNS, NFS
 - A local DNS sever
 Can not reply all the Request with the help Of other servers

A client iteratively contacts name servers NS1–NS3 in order to resolve a name
Server controlled navigation

- Non-recursive/Recursive
 - Recursive type is suitable in environments where administrative domain prohibits client-controlled navigation.

![Diagram of non-recursive and recursive server-controlled navigation]

Caching tech. in name resolution

- Enhance response time
- Eliminate the workload of high-level name servers
- Isolate the failures of high-level name servers
The Domain Name System

• Original Internet Naming scheme
 – A central master files
 – Download to all hosts by FTP

• Domain names [1987]
 – Name space is partitioned both organizationally and according to geography

The DNS name space

<table>
<thead>
<tr>
<th>Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com</td>
<td>Commercial organizations</td>
</tr>
<tr>
<td>Edu</td>
<td>Universities and other educational institutions</td>
</tr>
<tr>
<td>Gov</td>
<td>US governmental agencies</td>
</tr>
<tr>
<td>Mil</td>
<td>US military organizations</td>
</tr>
<tr>
<td>Net</td>
<td>Major network support centres</td>
</tr>
<tr>
<td>Org</td>
<td>Organizations not mentioned above</td>
</tr>
<tr>
<td>Int</td>
<td>International organizations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Us</td>
<td>United States</td>
</tr>
<tr>
<td>Uk</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Cn</td>
<td>China</td>
</tr>
</tbody>
</table>

Even geograph-sounding Domain names are conventional and are completely independent of their physical location.
The DNS name space

- A domain name including the component “.cn” must be looked up within the tree with cn as its root.

DNS queries

- Host name resolution
 - From URL to IP address

- Mail host location
 - Given a domain name, return a list of domain names of hosts that can accept the mail
 - E.g. tom@dcs.rnx.ac.uk
DNS queries …continued

- Reverse resolution
 - From IP to URL
- Host information
 - E.g. the architecture type or operating system of a machine
- Well-known services
 - A list of the services run by a computer
 - Protocol used to obtain them (UDP & TCP)

DNS name servers

- DNS names are divided into Zones
- Zone
 - Include names in the domain, less any sub-domains
 - At least two name servers for the zone
 - Hold name servers for the sub-domains
 - Domain and zones are two different concepts
- Each server hold zero or more Zones
 - Zero zone: the caching name server
 - Time-to-live of secondary
DNS name servers …continued

• Servers that a name server holds
 – Lower-level name servers
 • Child name servers
 – high-level name servers
 • One or more root name servers
 • Parent name server

• There are 13 root server in the world.

DNS name resolution

• Iterative navigation / recursive navigation
 – A query involving three component domain names such as www.berkeley.edu can be satisfied using at worst two navigation steps.

• Example

• DNS resource types
Server controlled navigation

DNS performance

- Replication
 - Zone data are replicated on at least two name servers
 - Master server / secondary server
 - Synchronize periodically

- Cache
 - Any server is free to cache data
 - Time-to-live value
DNS performance (2)

- **Availability & Scalability**
 - Achieved by a combination of replication, cache and partition
- **Acceptable inconsistent naming data**

Chapter 9: Name Services

- **Introduction**
- **Name services and the Domain Name System**
- **Directory and discovery services**
- **Case study of the Global Name Service**
- **Case study of the X.500 Directory Service**
- **Summary**
Directory services

- A special kind of naming service
 - Searching attributes
- Entries
 - Each entry is concerned with a set of <attribute, value> pairs
- Query
 - Lookup by known attributes
 - Return interested attributes
 - E.g. query one’s telephone No. by his name

Directory services (2)

- Yellow page / white page
 - Directory service / Conventional naming service
- Directory servers and navigation
 - Similar to name service
- Example
 - Active Directory Service
 - X.500
 - LDAP
Directory services (2)

- Different with DNS
 - Convenient to description
 - No relation with the administrative origination
 - Less simplicity

Discovery services

- A special kind of directory service
- Register the services provided in a spontaneous network
- General operations
 - Register / lookup / de-register
- E.g. a registered printer

```
ResourceClass=printer, type=laser, colour=yes, resolution=600dpi, Location=room101, url=http://www.hotelDuLac.com/services/printer57
```
Jini

• A lookup service
 – Look up services, Jini service, Jini client
 – A service registers an object with a set of attributes
 – Clients query the lookup service
 – Clients download service object that matches query

• Leases
 – A limited period of time during which the service can be used

How to locate lookup service in Jini?

• A priori
• No centralized server
• Multicast to a well-known IP multicast address
 – Lookup services listen on the receiving socket
 – Lookup services announce their existence
 – Different lookup services provide the different multicast address

• Example
Chapter 9: Name Services

• Introduction
• Name services and the Domain Name System
• Directory and discovery services
• Case study of the Global Name Service
• Case study of the X.500 Directory Service
• Summary

Introduction to GNS

• Designed by DEC lab [lampson 1986]
• Design objectives
 – Millions of computer names
 – Billions of email addresses for users
 – Long life time: accommodate changes
Introduction to GNS

• Hierarchical structure
• Name space – organizational structure
• Two assumption:
 – Update is infrequent
 – Slow dissemination of update is acceptance

Architecture of GNS

• **Directory tree / value tree**
• **Directory identifier (DI)**
 – Unique identifier of a directory
• **Name of an entry**
 – <directory name, value name>
 – E.g. <EC/UK/AC/QMW, Peter.Smith/password>
Architecture of GNS (2)

• Multiple name servers
 – Directory tree is partitioned and stored in many servers

• Replication
 – Each partition is replicated in several servers

• Cache
 – Inconsistency cache data is acceptable

How does GNS accommodate changes?

• Merge two name space by a super-root
 – How to it transparent to client applications?
 – E.g. how to locate /uk/ac/qmw ?

Well-known directories:

#599 = #633/EC
#642 = #633/NORTH AMERICA
Working root DI

- **Client agent**
 - Store the DI of working root by client agent
 - E.g., for <UK/AC/QMW, Peter.Smith>, client agent stores #599 which is the DI of “/”, i.e. EC

- **Resolve name**
 - Working root DI + relative path
 - Uniquely refer to a name in the merged tree
 - E.g. <#599/UK/AC/QMW, Peter.Smith>

Well-known directories

- **A table of well-know directories**
 - Mapping between working root DI to new absolute path

- **Replication**
 - Well-know directories are replicated at each nodes
 - Bottleneck of consistency

- **Examples**
Chapter 9: Name Services

- Introduction
- Name services and the Domain Name System
- Directory and discovery services
- Case study of the Global Name Service
- Case study of the X.500 Directory Service
- Summary

X.500 Architecture

- General purpose directory service
 - Directory information tree (DIT)
 - Partitioned and stored in different servers
 - Organized according to distinguished name
 - Service architecture
 - Directory user agent (DUA)
 - Directory service agent (DSA)
Search in X.500

- **DIB entry**
 - Consist of a name and a set of attributes
- **Attribute definition language**
- **Search**
 - Query by “a base name + a filter expression”
 - Return a list of entries

Light Directory Access Protocol (LDAP)

- **A distributed object naming service based on LDAP**
Chapter 9: Name Services

• Introduction
• Name services and the Domain Name System
• Directory and discovery services
• Case study of the Global Name Service
• Case study of the X.500 Directory Service
• Summary

Summary

• Basics of naming service
 – Map between name and attributes of objects
 – binding, resolve
• Name space
 – Syntactic rules
• Multiple name servers
• Cache & replication
• Cases
 – DNS
 – GNS: accommodating changes
 – X.500: directory service
Composed naming domains used to access a resource from a URL

URL

DNS lookup
Resource ID (IP number, port number, pathname)
55.55.55.55 8888 WebExamples/earth.html

Network address
2:60:8c:2:b0:5a file

Web server
Socket

DNS name servers

a.root-servers.net
(root)

ns1.nic.uk
(uk)

co.uk
ac.uk

ns0.ja.net
(ac.uk)

ic.ac.uk
qmw.ac.uk

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

.purdue.edu

.purdu.edu
(purdue.edu)

uk
purdue.edu

yahoo.com

.co.uk
.ac.uk

* .dcs.qmw.ac.uk

* .ic.ac.uk

DNS resource records

<table>
<thead>
<tr>
<th>Record type</th>
<th>Meaning</th>
<th>Main contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A computer address</td>
<td>IP number</td>
</tr>
<tr>
<td>NS</td>
<td>An authoritative name server</td>
<td>Domain name for server</td>
</tr>
<tr>
<td>CNAME</td>
<td>The canonical name for an alias</td>
<td>Domain name for alias</td>
</tr>
<tr>
<td>SOA</td>
<td>Marks the start of data for a zone</td>
<td>Parameters governing the zone</td>
</tr>
<tr>
<td>WKS</td>
<td>A well-known service description</td>
<td>List of service names and protocols</td>
</tr>
<tr>
<td>PTR</td>
<td>Domain name pointer (reverse lookups)</td>
<td>Domain name</td>
</tr>
<tr>
<td>HINFO</td>
<td>Host information</td>
<td>Machine architecture and operating system</td>
</tr>
<tr>
<td>MX</td>
<td>Mail exchange</td>
<td>List of <code><preference, host</code> pairs</td>
</tr>
<tr>
<td>TXT</td>
<td>Text string</td>
<td>Arbitrary text</td>
</tr>
</tbody>
</table>

Service discovery in Jini

1. ‘finance’ lookup service?
2. Here I am:
3. Request printing service
4. Use printing service
GNS directory tree and value tree for user Peter.Smith

Merging trees under a new root

Well-known directories:

#599 = #633/EC
#642 = #633/NORTH AMERICA
Restructuring the directory

Well-known directories:

#599 = #633/EC
#642 = #633/NORTH AMERICA

X.500 Service Architecture
Part of X.500 directory information tree

- X.500 Service (root)
 - France (country)
 - Great Britain (country)
 - Greece (country)
 - BT Plc (organization)
 - University of Gormenghast (organization)
 - Computing Service (organizationalUnit)
 - Department of Computer Science (organizationalUnit)
 - Engineering Department (organizationalUnit)
 - Departmental Staff (organizationalUnit)
 - Research Students (organizationalUnit)
 - Research Students (organizationalUnit)
 - Engineering Department (organizationalUnit)
 - Computing Service (organizationalUnit)
 - Alice Flintstone (person)
 - Pat King (person)
 - James Healey (person)
 - Janet Papworth (person)

An X.500 DIB entry

<table>
<thead>
<tr>
<th>info</th>
</tr>
</thead>
<tbody>
<tr>
<td>info</td>
</tr>
<tr>
<td>Alice Flintstone, Departmental Staff, Department of Computer Science, University of Gormenghast, GB</td>
</tr>
<tr>
<td>commonName</td>
</tr>
<tr>
<td>Alice.L.Flintstone</td>
</tr>
<tr>
<td>Alice.Flintstone</td>
</tr>
<tr>
<td>Alice Flintstone</td>
</tr>
<tr>
<td>A. Flintstone</td>
</tr>
<tr>
<td>surname</td>
</tr>
<tr>
<td>Flintstone</td>
</tr>
<tr>
<td>telephoneNumber</td>
</tr>
<tr>
<td>+44 986 33 4604</td>
</tr>
</tbody>
</table>