Chapter 3 - Linear Methods for Regression

The Elements of Statistic Learning 2nd Edition

by Liming Huang
Overview

• Linear Regression Models and Least Squares
• Selection
• Shrinkage Methods
• Methods Using Input Directions
• Further Discussion
Linear Regression Models and Least Squares

- Assumption: The regression function $E(Y|X)$ is linear or the linear model is a reasonable approximation.
- Use the input vector $X^T = (X_1, X_2, \ldots, X_p)$ to predict a real-valued output Y.
- Form:
 \[f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j. \]
 \[(3.1) \]

- X_j can come from different sources
• Least squares:

\[
\text{RSS}(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2
\]

\[
= \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2.
\]

(3.2)

• Here

\[
\beta = (\beta_0, \beta_1, \ldots, \beta_p)^T
\]

• \(X\) as \(N \times (p+1)\) matrix:

\[
\text{RSS}(\beta) = (y - X\beta)^T(y - X\beta).
\]

• To minimize:

\[
\frac{\partial \text{RSS}}{\partial \beta} = -2X^T(y - X\beta)
\]

\[
\frac{\partial^2 \text{RSS}}{\partial \beta \partial \beta^T} = 2X^TX.
\]
• Assume X has full column rank:

- $X^T(y - X\beta) = 0$
- $\hat{\beta} = (X^TX)^{-1}X^Ty.$
- $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty,$

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x_1 and x_2. The projection \hat{y} represents the vector of the least squares predictions.
• What if X is not of full rank?

• It will still work but with more than one way to express that projection in terms of the column vectors of X
• Assume the observations y_i are uncorrelated with a constant variance σ^2 and the x_i are fixed

$$\text{Var}(\hat{\beta}) = (X^T X)^{-1} \sigma^2.$$

• $\Rightarrow E(y) = X\beta$

• $\Rightarrow E(\hat{\beta}) = (X^T X)^{-1} X^T X \beta = \beta$

• $\Rightarrow \hat{\beta} - E(\hat{\beta}) = (X^T X)^{-1} X^T \varepsilon$

• $\Rightarrow \text{Var}(\hat{\beta}) = E[(\hat{\beta} - E(\hat{\beta}))(\hat{\beta} - E(\hat{\beta}))^T]$

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2).$$
• Test the hypothesis that a particular coefficient $\hat{\beta}_j = 0$
 • Z-score

 $$z_j = \frac{\hat{\beta}_j}{\hat{\sigma} \sqrt{v_j}},$$

 where v_j is the jth diagonal element of $(X^T X)^{-1}$ and z_j is distributed as t_{N-p-1}

• Test the significance of groups of coefficients simultaneously
 • F statistic:

 $$F = \frac{(RSS_0 - RSS_1)/(p_1 - p_0)}{RSS_1/(N - p_1 - 1)},$$
• The Gauss-Markov Theorem
 • The least squares estimator has the smallest mean squared error of all linear estimators with no bias.
 • Focus on estimation of any linear combination of \(\theta = a^T \beta \);
 • The least square estimate: \(\hat{\theta} = a^T \hat{\beta} = a^T (X^T X)^{-1} X^T y \).
 • Assume the linear model is correct:

\[
E(a^T \hat{\beta}) = E(a^T (X^T X)^{-1} X^T y) \\
= a^T (X^T X)^{-1} X^T X \beta \\
= a^T \beta.
\]

• Then we can get: \(\text{Var}(a^T \hat{\beta}) \leq \text{Var}(c^T y) \).
• Multiple Regression from Simple Univariate Regression
 • Multiple linear regression model: the linear model with p>1 inputs
 • Univariate regression: p=1

• A univariate model with no intercept: \(Y = X\beta + \varepsilon \)
 • Least square estimate:
 \[
 \hat{\beta} = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2}, \quad \Rightarrow \quad \hat{\beta} = \frac{\langle x, y \rangle}{\langle x, x \rangle},
 \]
 • Residuals:
 \[
 r_i = y_i - x_i \hat{\beta}.
 \]

In convenient vector notation, we let \(y = (y_1, \ldots, y_N)^T, x = (x_1, \ldots, x_N)^T \) and define

\[
\langle x, y \rangle = \sum_{i=1}^{N} x_i y_i, \\
= x^T y,
\]

(3.25)
• For multiple regression model:
 • If the inputs (The columns of the data matrix X) are orthogonal
 • For all \(j \neq k \), we have \(\langle x_j, x_k \rangle = 0 \)
 • \(\hat{\beta}_j \) are equal to \(\frac{\langle x_j, y \rangle}{\langle x_j, x_j \rangle} \)
 • The inputs have no effect on each other’s parameter estimates in the model
 • The inputs are not orthogonal
 • The most common case
 • We need to orthogonalize them
 • Suppose we have an intercept and a single input \(x \), then
 \[
 \hat{\beta}_1 = \frac{\langle x - \bar{x}_1, y \rangle}{\langle x - \bar{x}_1, x - \bar{x}_1 \rangle},
 \]
 where \(\bar{x} = \sum_i x_i/N \), and \(1 = x_0 \), the vector of \(N \) ones.
Two steps:

1. regress x on 1 to produce the residual $z = x - \bar{x}1$;

2. regress y on the residual z to give the coefficient $\hat{\beta}_1$.

In this procedure, “regress b on a” means a simple univariate regression of b on a with no intercept, producing coefficient $\hat{\gamma} = \langle a, b \rangle / \langle a, a \rangle$ and residual vector $b - \hat{\gamma}a$. We say that b is adjusted for a, or is “orthogonalized” with respect to a.
• Generalize to the case of p inputs: (Gram-Schmidt)

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize $z_0 = x_0 = 1$.
2. For $j = 1, 2, \ldots, p$

 Regress x_j on $z_0, z_1, \ldots, z_{j-1}$ to produce coefficients $\hat{\gamma}_{\ell j} = \langle z_\ell, x_j \rangle / \langle z_\ell, z_\ell \rangle$, $\ell = 0, \ldots, j - 1$ and residual vector $z_j = x_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} z_k$.
3. Regress y on the residual z_p to give the estimate $\hat{\beta}_p$.

Note that the inputs z_0, \ldots, z_{j-1} in step 2 are orthogonal

• Any one of the inputs can be in the position, similar results holds.
The result of this algorithm is

\[\hat{\beta}_p = \frac{\langle z_p, y \rangle}{\langle z_p, z_p \rangle}. \]

\[\text{Var}(\hat{\beta}_p) = \frac{\sigma^2}{\langle z_p, z_p \rangle} = \frac{\sigma^2}{\| z_p \|^2}. \]
2. For $j = 1, 2, \ldots, p$

Regress x_j on $z_0, z_1, \ldots, z_{j-1}$ to produce coefficients $\hat{\gamma}_j = \frac{\langle z_{\ell}, x_j \rangle}{\langle z_{\ell}, z_{\ell} \rangle}$, $\ell = 0, \ldots, j - 1$ and residual vector $z_j = x_j - \sum_{k=0}^{j-1} \hat{\gamma}_j z_k$.

We can represent step 2 of Algorithm 3.1 in matrix form:

$$X = Z\Gamma,$$

- Introducing the diagonal matrix with jth diagonal entry $D_{jj} = \|z_j\|$
- QR decomposition:
 $$X = ZD^{-1}\Gamma = QR,$$
 $$\hat{\beta} = R^{-1}Q^T y,$$
 $$\hat{y} = QQ^T y.$$
Subset Selection

• The least squares estimates:
 • Prediction accuracy
 • Interpretation

• To retain only a subset of the variables
 • Best-subset selection
 • Forward- and backward-stepwise selection
 • Forward-stagewise regression
Shrinkage Methods

• Ridge Regression
 • Imposing a penalty on the regression coefficients’ size
 • Standardize the input first

\[\hat{\beta}_{\text{ridge}} = \arg \min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2, \]

subject to \(\sum_{j=1}^{p} \beta_j^2 \leq t, \)

\[\hat{\beta}_{\text{ridge}} = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}. \]
Writing the criterion in (3.41) in matrix form,

$$\text{RSS}(\lambda) = (y - X\beta)^T(y - X\beta) + \lambda \beta^T \beta,$$

the ridge regression solutions are easily seen to be

$$\hat{\beta}_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y,$$
• The mean of a posterior distribution
 • Suppose $(y_i | \beta) \sim N(\beta_0 + x_i^T \beta, \sigma^2) = N(\beta_0 + \sum_{j=1}^{P} x_{ij} \beta_j)$
 • $\beta_j \sim N(0, \sigma^2)$, independently of one another
 • Posterior distribution:

$$p(\beta | y) = \frac{p(y | \beta)p(\beta)}{p(y)}$$

It is direct proportional to

$$p(y | \beta)p(\beta) = (2\pi\sigma^2)^{-\frac{N}{2}}(2\pi\delta^2)^{-\frac{P}{2}} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{P} x_{ij} \beta_j)^2 - \frac{1}{2\delta^2} \sum_{j=1}^{P} \beta_j^2 \right\}$$

• Let $\lambda = \frac{\sigma^2}{\delta^2}$ and compare with

$$\hat{\beta}_{ridge} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{P} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{P} \beta_j^2 \right\}.$$
• The Singular Value Decomposition

\[X = UDV^T. \]

Using the singular value decomposition we can write the least squares fitted vector as

\[X_\beta^{ls} = X(X^TX)^{-1}X^T y \]
\[= UU^T y, \quad (3.46) \]

Now the ridge solutions are

\[X_{\hat{\beta}}^{\text{ridge}} = X(X^TX + \lambda I)^{-1}X^T y \]
\[= UD(D^2 + \lambda I)^{-1}D U^T y \]
\[= \sum_{j=1}^{p} u_j \frac{d_j^2}{d_j^2 + \lambda} u_j^T y, \]

• It’s obvious that \[\frac{d_j^2}{d_j^2 + \lambda} < 1 \]
• The Lasso
 • The L2 ridge penalty to L1 lasso penalty
 • Making t sufficiently small will cause some of the coefficients to be exactly zero

$$\hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

subject to $\sum_{j=1}^{p} |\beta_j| \leq t$.

$$\hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}.$$
• The Lasso
 • The L2 ridge penalty to L1 lasso penalty
 • Making t sufficiently small will cause some of the coefficients to be exactly zero

\[
\hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j \right)^2
\]

subject to
\[
\sum_{j=1}^{p} |\beta_j| \leq t.
\]

\[
\hat{\beta}_{\text{lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}.
\]
TABLE 3.4. Estimators of β_j in the case of orthonormal columns of X. M and λ are constants chosen by the corresponding techniques; sign denotes the sign of its argument (± 1), and x_+ denotes “positive part” of x. Below the table, estimators are shown by broken red lines. The 45° line in gray shows the unrestricted estimate for reference.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best subset (size M)</td>
<td>$\hat{\beta}_j \cdot I(</td>
</tr>
<tr>
<td>Ridge</td>
<td>$\hat{\beta}_j / (1 + \lambda)$</td>
</tr>
<tr>
<td>Lasso</td>
<td>$\text{sign}(\hat{\beta}_j) (</td>
</tr>
</tbody>
</table>

![Graphs showing Best Subset, Ridge, and Lasso estimators]
• Ridge regression and Lasso

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \leq t$ and $\beta_1^2 + \beta_2^2 \leq t^2$, respectively, while the red ellipses are the contours of the least squares error function.
• Generalization

\[\tilde{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\} \]

FIGURE 3.12. Contours of constant value of \(\sum_j |\beta_j|^q\) for given values of \(q\).
• Path Algorithm
 • All the inputs and outputs have been standardized
 • Forward Stepwise

算法的目标是最小化残差平方和。

第一步，模型所有变量的回归系数都是0，我们需要找出一个变量，估计其回归系数，使得这个模型最能够减小当前的残差平方和，即最能改进模型的拟合情况。

第二步，从剩余变量中选出一个，使得加入这个变量之后的活跃变量集合能够使得模型拟合进步最大。用所有活跃集中的变量进行回归。

重复第二步，直到符合某种准则。

请注意，对于stepwise而言，每一步的关键是找出最能改进拟合情况的变量，然后对所有入选的变量，即被激活的变量集合重新做回归。也就是说每一步都做了多元回归。
• **Forward Stagewise**

简单描述一下这个算法，在开始的时候，所有输入变量的系数都是0，即都处于睡眠状态，那么当前的残差就是输出y。

算法开始，找出和当前残差相关系数最高的变量，激活它，用当前的残差和其做回归，估计出回归系数。计算当前残差。

然后再找出所有变量中和当前残差相关系数最高的，激活它，用当前残差和其做回归，计算处回归系数，计算当前残差。注意这里在计算时，之前入选的变量的系数并没有变化。

然后在找出所有变量中和当前残差相关系数最高的（有可能是已经入选的变量），激活它，再用当前残差和其做回归，计算系数，计算当前残差。

重复上述过程直到达到某种准则。对于观测样本量大于变量数的情况，最终的结果就是普通的最小二乘估计。

从算法的描述我们可以看出，逐渐回归每一步并非充分地估足了回归系数。所以这种算法又被成为“慢拟合”（slow fitting）
• Least Angle Regression

Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit norm. Start with the residual \(r = y - \bar{y}, \beta_1, \beta_2, \ldots, \beta_p = 0. \)

2. Find the predictor \(x_j \) most correlated with \(r. \)

3. Move \(\beta_j \) from 0 towards its least-squares coefficient \(\langle x_j, r \rangle, \) until some other competitor \(x_k \) has as much correlation with the current residual as does \(x_j. \)

4. Move \(\beta_j \) and \(\beta_k \) in the direction defined by their joint least squares coefficient of the current residual on \((x_j, x_k), \) until some other competitor \(x_l \) has as much correlation with the current residual.

5. Continue in this way until all \(p \) predictors have been entered. After \(\min(N - 1, p) \) steps, we arrive at the full least-squares solution.
Suppose A_k is the active set of variables at the beginning of the kth step, and let β_{A_k} be the coefficient vector for these variables at this step; there will be $k - 1$ nonzero values, and the one just entered will be zero. If $r_k = y - X_{A_k}\beta_{A_k}$ is the current residual, then the direction for this step is

$$\delta_k = (X_{A_k}^T X_{A_k})^{-1}X_{A_k}^T r_k.$$ \hfill (3.55)
• The LAR and Lasso

FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated data, as a function of the L_1 arc length. The right panel shows the Lasso profile. They are identical until the dark-blue coefficient crosses zero at an arc length of about 18.
• The loss function of Lasso

\[R(\beta) = \frac{1}{2} \| y - X\beta \|_2^2 + \lambda \| \beta \|_1. \]

\[\frac{\partial R}{\partial \beta} = -X^T y + X^T X \beta + \lambda \text{sign}(\beta), \quad \forall j \in A \]

\[x_j^T (y - X\beta) = \lambda \cdot \text{sign}(\beta_j), \quad \forall j \in B \]

• For LAR

\[x_j^T (y - X\beta) = \gamma \cdot s_j, \quad \forall j \in A \]
• When $s_j \neq \text{sign}(\beta_j)$, they LAR differs from Lasso in the path

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the current joint least squares direction.
Methods Using Derived Input Directions

• Produce a small number of linear combinations $Z_m, m = 1, \ldots, M$ of the original inputs X_j, and the Z_m are then used in place of the X_j as inputs in the regression.

• Principal components regression

• Partial least square
• Principal Components Regression
 • Principal components \(Z_m\)
 • \(X = UDV^T\)
 • \(X^TX = VD^2VT\)
 • The columns of \(V\) are called the principal components directions of \(X\)
 • Steps:
 • Form the derived input columns \(z_m = Xv_m\)
 • Regress \(y\) on \(z_1, z_2, \ldots, z_M\) for some \(M \leq p\)
 • The \(z_m\) are orthogonal:

\[
\hat{y}_{(M)}^{pcr} = \bar{y}1 + \sum_{m=1}^{M} \hat{\theta}_m z_m, \quad \text{where } \hat{\theta}_m = \langle z_m, y \rangle / \langle z_m, z_m \rangle.
\]

\[
\hat{\beta}_{pcr}(M) = \sum_{m=1}^{M} \hat{\theta}_m v_m.
\]
• Partial least squares

Algorithm 3.3 Partial Least Squares.

1. Standardize each x_j to have mean zero and variance one. Set $\hat{y}^{(0)} = \bar{y}1$, and $x_j^{(0)} = x_j$, $j = 1, \ldots, p$.

2. For $m = 1, 2, \ldots, p$

 (a) $z_m = \sum_{j=1}^{p} \hat{\phi}_{mj}x_j^{(m-1)}$, where $\hat{\phi}_{mj} = \langle x_j^{(m-1)}, y \rangle$.

 (b) $\hat{\theta}_m = \langle z_m, y \rangle / \langle z_m, z_m \rangle$.

 (c) $\hat{y}^{(m)} = \hat{y}^{(m-1)} + \hat{\theta}_m z_m$.

 (d) Orthogonalize each $x_j^{(m-1)}$ with respect to z_m: $x_j^{(m)} = x_j^{(m-1)} - \left[\frac{\langle z_m, x_j^{(m-1)} \rangle}{\langle z_m, z_m \rangle} \right] z_m$, $j = 1, 2, \ldots, p$.

3. Output the sequence of fitted vectors $\{\hat{y}^{(m)}\}_{1}^{p}$. Since the $\{z_\ell\}_{1}^{m}$ are linear in the original x_j, so is $\hat{y}^{(m)} = X\hat{\beta}_{\text{pls}}(m)$. These linear coefficients can be recovered from the sequence of PLS transformations.
Further Discussion

• Compare
 • PLS, PCR and ridge regression tend to behave similarly.
 • Ridge regression may be preferred because it shrinks smoothly.
 • Lasso falls somewhere between ridge regression and best subset regression, and enjoys some of the properties of each.
• Multiple outcome shrinkage and selection
 • Option 1: do not consider the correlation in different outcomes, and apply single outcome shrinkage and selection to each outcome
 • Option 2: exploit correlations in different outcomes

• Canonical Correlation Analysis
 • Derived input and outcome space based on canonical correlation analysis that maximize
 $\text{Corr}^2(YU_m, Xv_m)$
 • Regression in derived directions
 – Step 1: Map y into derived directions
 YU_m
 – Step 2: Do regression in the derived space
 $X(X^TX)^{-1}X^TYU_m$
 – Step 3: Map back to y’s original space
 $\hat{Y}_{rr} = X(X^TX)^{-1}X^TYU_mU_m^{-1}$

• Reduced Rand Regression
Summary

• Bias Variance trade off:
 – Subset selection (feature selection, discrete)
 – Coefficient shrinkage (smoothing)
 – Using derived input direction

• Multiple outcome shrinkage and selection

• Most of the algorithms are sensitive to scaling of the parameters
 – Standardize the inputs, such as normalizing input directions to the same variance
The End

• Thank you!