Only at most six friends on display, compare directly. $O(n)$ complexity.

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
</tr>
<tr>
<td>4 2 8</td>
</tr>
<tr>
<td>300 950 500 200</td>
</tr>
<tr>
<td>1 3</td>
</tr>
<tr>
<td>2 4</td>
</tr>
<tr>
<td>2 3</td>
</tr>
<tr>
<td>1 1</td>
</tr>
<tr>
<td>1 2</td>
</tr>
<tr>
<td>2 1</td>
</tr>
<tr>
<td>2 2</td>
</tr>
<tr>
<td>2 3</td>
</tr>
<tr>
<td>output</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>YES</td>
</tr>
</tbody>
</table>
Use a list \(\mathbf{li} \) to keep track of the gender of the dancers. Use a list \(\mathbf{dan} \) to keep track of the dancer’s left and right neighbours. Use a heap \(\mathbf{h} \) to keep track of the neighbouring couples ever appeared. Use a set \(\mathbf{notthere} \) to log the neighbouring couples that are not currently in the line.

\[
\text{heapify}(\mathbf{h})
\]

\[
\text{while } \mathbf{h}:
\]

\[
d = \text{heappop}(\mathbf{h})
\]

\[
\text{if not}(d[1] \text{ in } \mathbf{notthere}):
\]

\[
1, r = d[1][0], d[1][1]
\]

\[
l = \text{dan}[1][0] ; ri = \text{dan}[r][1]
\]

\[
L = R = \text{False}
\]

\[
\text{if } le != \text{ None}:
\]

\[
\text{if } li[le-1] != li[1-1]:
\]

\[
\text{notthere}.\text{add}((le, li))
\]

\[
\text{dan}[le][1] = ri
\]

\[
L = \text{True}
\]

\[
\text{if } ri != \text{ None}:
\]

\[
\text{if } li[ri-1] != li[r-1]:
\]

\[
\text{notthere}.\text{add}((r, ri))
\]

\[
\text{dan}[ri][0] = le
\]

\[
R = \text{ True}
\]

\[
\text{if } L \text{ and } R:
\]

\[
\text{if } li[le-1] != li[ri-1]:
\]

\[
\text{heappush}(\mathbf{h}, \text{abs}(a[le-1]-a[ri-1]), (le, ri)))
\]

\[
\text{seq.append(' ' .join((\text{str}(l), \text{str}(r))))}
\]
The result is the greatest common divisor of all the numbers

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 2</td>
<td>2</td>
</tr>
<tr>
<td>3 2 4 6</td>
<td>6</td>
</tr>
<tr>
<td>2 12 18</td>
<td>12</td>
</tr>
<tr>
<td>5 45 12 27 30 18</td>
<td>15</td>
</tr>
</tbody>
</table>
We simulate the process. Use a heap h to keep track of the current first substrings of the string s. First, we heapify all the characters in the string, the top of the heap is to be written down. Second, each time we have written down a substring a on the top of the heap, we add to the heap the substring made by $a + s[\text{last_of}_a]$

```python
for i in range(k):
    t = heap.pop(h)
    last_of_a, a = t[1], t[0]
    ans = a
    if last_of_a < n:
        a += s[last_of_a]
        heap.push(h, (a, last_of_a+1))
print(ans)
```