Building a Scalable Multimedia Search Engine Using Infiniband

Qi Chen

Yisheng Liao, Christopher Mitchell, Jinyang Li, Zhen Xiao

Peking University NYU
Online search must be scalable

Example Search Engines: Google, Bing
How multimedia search is done

billions of Features

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>...</th>
<th>Feature x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Img 1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Img 2</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Img n</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

billions of images

Indexing (usually done offline)
How multimedia search is done

Search features f_1, f_2, \ldots, f_n

Query image

Indexing (usually done offline)
Two ways to distribute: horizontal partition

<table>
<thead>
<tr>
<th></th>
<th>Feature 1</th>
<th>Feature 2</th>
<th></th>
<th>Feature f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Img 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Img 2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Img 3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Img n</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not scalable because a query must contact all servers
Two ways to distribute: vertical partition

<table>
<thead>
<tr>
<th></th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>…</th>
<th>…</th>
<th>Feature f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Img 1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Img 2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Img n</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Expensive because a query may look up tens of thousands of features
Horizontal vs. vertical: State-of-art and new opportunity

- Horizontal beats vertical partitioning on the Ethernet
- But..
- Ultra-low latency network is coming to data centers
 - Infiniband, RoCE
 - $\text{RTT} \approx 10\text{us.} \ (\text{compared to } \text{RTT} > 100\text{us on Ethernet})$

- Our insight: Vertical beats horizontal on low-latency networks
 - Why latency matters: Use more roundtrips to reduce feature lookups
Outlines

1. Motivation
2. VertiCut Design
3. Evaluation
4. Related Work
Overview of VertiCut Image Search

- **Indexing**
 - Offline indexer transforms images to 128-bit binary codes

- **Searching**
 - Online k-nearest-nbr (KNN) algorithm finds k codes with smallest hamming distance to a query code
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’ 12]

To index

- Break a 128-bit code into 4 pieces
- Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111\ 000\ldots101\ 000\ldots101\ 001\ldots110
\]
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’ 12]
- To index
 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111 \mid 000\ldots101 \mid 000\ldots101 \mid 001\ldots110
\]
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR ’12]

- To index

 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111 \ 000\ldots101 \ 000\ldots101 \ 001\ldots110
\]

<table>
<thead>
<tr>
<th>index</th>
<th>img list</th>
</tr>
</thead>
<tbody>
<tr>
<td>000...000</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>011...111</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>T1</td>
<td></td>
</tr>
</tbody>
</table>
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’12]
- To index
 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111 000\ldots101 000\ldots101 001\ldots110
\]

<table>
<thead>
<tr>
<th>index</th>
<th>img list</th>
</tr>
</thead>
<tbody>
<tr>
<td>000\ldots000</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>011\ldots111</td>
<td>\ldots,\text{Code}(x)</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Ti
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’12]

- To index
 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[\text{Code}(x) = 011\ldots111 \quad 000\ldots101 \quad 000\ldots101 \quad 001\ldots110 \]

<table>
<thead>
<tr>
<th>index</th>
<th>img list</th>
</tr>
</thead>
<tbody>
<tr>
<td>000...000</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>011...111</td>
<td>...</td>
</tr>
<tr>
<td>000...101</td>
<td>...</td>
</tr>
<tr>
<td>000...101</td>
<td>Code(x)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’ 12]
- To index
 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111 \ 000\ldots101 \ 000\ldots101 \ 001\ldots110
\]
How to do KNN in binary space?

- VertiCut uses Multi-index Hashing [CVPR’12]
- To index
 - Break a 128-bit code into 4 pieces
 - Insert i-th piece in hash table Ti

\[
\text{Code}(x) = 011\ldots111 000\ldots101 000\ldots101 001\ldots110
\]
VertiCut search architecture

\[Q = 011\ldots110 \]

Search nodes

Get (\(~10\text{us}\))

Pilaf DHT [USENIX ATC’13]

<table>
<thead>
<tr>
<th>index</th>
<th>img list</th>
</tr>
</thead>
<tbody>
<tr>
<td>000\ldots000</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>
How to do KNN in binary space?

- To search 100 KNNs given a query code q
How to do KNN in binary space?

To search 100 KNNs given a query code \(q \)

Find KNNs with hamming distance < 4
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 4

For each hash table T_i

$S \leftarrow$ Enum indices with distance $= 0$

For each idx in S:

$C \leftarrow C \cup T_i.lookup(idx)$

query code q

$00\ldots11$ $01\ldots01$ $10\ldots01$ $11\ldots10$
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 4

For each hash table Ti
 \[S \leftarrow \text{Enum indices with distance} = 0 \]
 For each idx in S:
 \[C \leftarrow C \cup T_i.\text{lookup}(idx) \]
How to do KNN in binary space?

To search 100 KNNs given a query code \(q \)

Find KNNs with hamming distance < 4

For each hash table \(T_i \)

\[
S \leftarrow \text{Enum indices with distance} = 0
\]

For each \(idx \) in \(S \):

\[
C \leftarrow C \cup T_i.\text{lookup}(idx)
\]
How to do KNN in binary space?

- To search 100 KNNs given a query code q

Find KNNs with hamming distance < 4

For each hash table T_i

 $S \leftarrow$ Enum indices with distance $= 0$

 For each idx in S:

 $C \leftarrow C \cup T_i.lookup(idx)$
How to do KNN in binary space?

To search 100 KNNs given a query code \(q \),

- Find KNNs with hamming distance < 4.
 - For each hash table \(T_i \):
 - \(S \leftarrow \text{Enum indices with distance} = 0 \)
 - For each \(idx \) in \(S \):
 - \(C \leftarrow C \cup T_i.\text{lookup}(idx) \)
 - For each image code \(x \) in \(C \):
 - if \(\text{distance}(x, q) < 4 \):
 - add \(x \) to result
 - if \(|\text{result}| \geq 100 \):
 - return KNN in result

Query code \(q \):

- \(00\ldots11 \)
- \(01\ldots01 \)
- \(10\ldots01 \)
- \(11\ldots10 \)
How to do KNN in binary space?

- To search 100 KNNs given a query code \(q \)

Find KNNs with hamming distance < 8
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 8

For each hash table T_i

$S \leftarrow \text{Enum indices with distance} = 1$

For each idx in S:

$C \leftarrow C \cup T_i.lookup(idx)$
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 8

For each hash table Ti
S ← Enum indices with distance = 1
For each idx in S:
C ← C ∪ Ti.lookup(idx)
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 8

For each hash table T_i

$S \leftarrow$ Enum indices with distance = 1

For each idx in S:

$C \leftarrow C \cup T_i.lookup(idx)$
How to do KNN in binary space?

- To search 100 KNNs given a query code q

Find KNNs with hamming distance < 8

For each hash table Ti
 S ← Enum indices with distance = 1
 For each idx in S:
 C ← C ∪ Ti.lookup(idx)

query code q

00...11 01...01 10...01 11...10
How to do KNN in binary space?

To search 100 KNNs given a query code q

Find KNNs with hamming distance < 8

For each hash table T_i

$S \leftarrow$ Enum indices with distance $= 1$

For each idx in S:

$C \leftarrow C \cup T_i$.lookup(idx)

For each image code x in C:

if distance(x, q) < 8:

add x to result

if $|\text{result}| \geq 100$:

return KNN in result
How to do KNN in binary space?

- To search 100 KNNs given a query code \(q \)

For each image code \(x \) in \(C \):

- if distance \(x, q \) < \(d \):
 - add \(x \) to result

if |result| >= 100:
 - return KNN in result
Optimization #1: approx. KNN

To search 100 KNNs given a query code q

For each \(d = 4, 8, 12, 16, \ldots \).

For each hash table \(T_i \)

\[S \leftarrow \text{Enum indices with distance} = \frac{d}{4} - 1 \]

For each idx in \(S \):

\[C \leftarrow C \cup T_i.\text{lookup}(\text{idx}) \]

Problem:

Large \(d \) \(\rightarrow \) numerous (combinatorial) lookups

Typically, \(d=20 \) \(\rightarrow \)

\#lookups = 165K

For each image code \(x \) in \(C \):

if \(\text{distance}(x, q) < d \):
 add \(x \) to result
if \(|\text{result}| \geq 100 \):
 return KNN in result
Optimization #1: approx. KNN

To search 100 KNNs given a query code q

For each $d = 4, 8, 12, 16, \ldots$.

For each hash table T_i

- $S \leftarrow \text{Enum indices with distance } = \frac{d}{4} - 1$

- For each idx in S:
 - $C \leftarrow C \cup T_i.\text{lookup}(\text{idx})$

For each image code x in C:

- if $\text{distance}(x, q) < d$:
 - add x to result

- if $|\text{result}| \geq 100$:
 - return KNN in result

Problem:
Large $d \rightarrow$ numerous (combinatorial) lookups

Typically, $d=20 \rightarrow$
#lookups = 165K

Our insight:

- Stop search as soon as the candidate set C is big enough
- KNNs in C approximates the true KNNs
Optimization #1: approx. KNN

To search 100 KNNs given a query code q

For each $d = 4, 8, 12, 16, \ldots$

For each hash table T_i
 $S \leftarrow \text{Enum indices with distance } = \frac{d}{4} - 1$
 For each idx in S:
 $C \leftarrow C \cup T_i.lookup(idx)$
 if $|C| \geq f \times 100$:
 return KNN in result

Our insight:
- Stop search as soon as the candidate set C is big enough
- KNNs in C approximates the true KNNs
Optimization #1: approx. KNN

Experiments show:
- To obtain k results, we can stop search when $|C| > 20 \times k$
- Results contain 80% of true KNNs
- Avg. distance of results is close to that of true KNNs (<1)
- Reduces # of lookups by a factor of 40
Optimization #2: avoid null lookups

- Observation: >90% lookups return empty result
- Each search node keeps a bitmap for each hash table
 - Do a lookup in DHT only after the bitmap returns a hit
 - Bitmap size (4*500MB) does not increase with # of images indexed

\[Q = 011\ldots110 \]

Pilaf DHT \textit{[USENIX ATC'13]}
Outlines

1. Motivation
2. VertiCut Design
3. Evaluation
4. Related Work
Experiment Environment

- Experimental Setup

- 12 servers connected with 20Gbps Infiniband

- 1 billion image descriptors from BIGANN dataset

- Each query retrieves 1000 KNNs
Vertical scales better than Horizontal

- ~22000 DHT gets ~5500 RTTs
- ~10800 DHT gets ~2700 RTTs

10 million images
120 million images
VertiCut is only feasible on low-latency network

~2700 RTTs
8 times slower on Ethernet
Effects of Optimizations

of DHT lookups

- No opt: 60.5 s
- Approx: 0.75 s
- Bitmap: 2.3 s
- VertiCut: 0.11 s

550X latency reduction
1. Motivation
2. VertiCut Design
3. Evaluation
4. Related Work
Related Work

- Bag-of-features based search
 - Ji et al.[TM’13], MARÉE et al.[MIR’10], YAN et al.[SenSys’08], MIH[CVPR’12], Rankreduce[LSDS-IR’10]
 - Traditionally use horizontal partition for distribution

- High-dimentional search trees (e.g. KD-tree)
 - ALY et al.[BMVC’11]
 - Build a distributed tree offline → Cannot be incrementally updated
Conclusion

- Ultra low-latency networks allow vertical partition to perform better than traditional horizontal partition

- VertiCut: a scalable image search engine
 - Built on top of Pilaf DHT on Infiniband
 - Use two optimizations to reduce DHT lookups
 - Approximate nearest neighbor search
 - Eliminate empty lookups
Thank You!