Knowledge Sharing via Social Login: Exploiting Microblogging Service for Warming up Social Question Answering Websites

Yang Xiao, Wayne Xin Zhao, Kun Wang, Zhen Xiao
NC&IS LAB, Peking University, China
Outline

• **Motivation**
 • Social Login
 • Cold start in CQA

• **Our Method**
 • System Design
 • Features

• **Experiment**
 • Experiment Setup
 • Results Analysis

• **Conclusion**
The Social World

555 million Users
58 million Tweets
Per Day

560 million Users

1,310,000,000
Active Users
18 minutes Spent
Per Visit

829 million Users
Mobile QQ cover all smartphones.
Social Login

- Users can surf the Internet using **Consistent Identities**
- Collect crowds of users in **Short** time
- Gain **Reliable** user profiles
- Weibo Open API:
 - 600,000 third party websites, 60,000,000 external websites visits daily
However,

• Despite that social media data is **Abundant**, only **Simple** profiles are leveraged via social login...

• Mine **more value** from social login?
Community Question Answering
Zhihu Q&A site

• First social network based Q&A
 • User graph
 • User topic graph
 • User question graph

• High-quality questions and answers
 • True domain experts participation
 • Primary experience
Long Tail Phenomenon

- Most contributions in CQA services are made by a small number of users.
 - 85% of users answer fewer than 10 questions
 - 60% of users answer fewer than 4 questions
 - Hard to estimate users’ expertise
- New comers are prone to leave CQA services very soon

Make users on the long tail stay longer
Discover experts at an early stage
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Bridge the gap

Data Shortage on CQA

Abundant Footprints On Social Media
Bridge the gap

Candidates Rank = \(<\text{Weibo Footprints}\>) + \(<\text{Zhihu Performance}\>)
Weibo and Zhihu Features
Weibo: Relationship Perspective

• Users who have **higher prestige** tends to provide **better** answer

• PageRank

 • $s^{n+1} = \mu M^T s^n + (1 - \mu) y$

• **Performance Biased** Random Walk

 • y represents the user performance on Zhihu
Weibo: Content Perspective

- Users who are **more interested** in the question related topic tends to provide **better** answer.
- Model the **relevance** between a question and a user.
- Relevance: KL divergence
- \(\text{Rel}(q, u) = -KL(\theta^q, \theta^u) \)
 \[
 = \sum_{\omega \in \mathcal{V}} p(\omega | \theta^q) \log \frac{p(\omega | \theta^q)}{p(\omega | \theta^u)}
 \]
Weibo: Content Perspective

- θ^q estimation
 - Question sparsity problem
 - Translation model
 - $\theta^q_\omega \propto \sum_{t \in q} p(\omega, t) = \sum_{t \in q} p(\omega|t)p(t|q)$

- θ^u estimation
 - Tweets accumulation
 - $\theta^q_\omega = \frac{\#(\omega,u)+1}{\sum_{\omega' \in V} \#(\omega',u)+|V|}$

Use tags to index questions
Zhihu Features

• In order to test Weibo effect, we take Zhihu features as baseline.

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Best Answers</td>
</tr>
<tr>
<td>Number of Answers</td>
</tr>
<tr>
<td>Number of Received Votes</td>
</tr>
<tr>
<td>Average Number of Votes</td>
</tr>
<tr>
<td>Smoothed Average number of Votes</td>
</tr>
<tr>
<td>Best Answer Ratio</td>
</tr>
<tr>
<td>Smoothed Best Answer Ratio</td>
</tr>
<tr>
<td>Average Answer Length</td>
</tr>
</tbody>
</table>
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Experiment Setup
Dataset

• Crawling Zhihu
 • Snowball-crawled Webpages
 • 266K users, 819K questions, 2.7 million answers
 • 50% of users log in using Sina Weibo account

• Crawling Weibo
 • Crawl the linked users’ weibo pages and relationships

• Dataset

<table>
<thead>
<tr>
<th>Users</th>
<th>Questions</th>
<th>Answers</th>
<th>Topics</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,742</td>
<td>335,145</td>
<td>883,373</td>
<td>44,333</td>
<td>21,121,955</td>
</tr>
</tbody>
</table>
Hypothesis testing

- Spearman Correlation Test
- Prestige
 - Grouping users into buckets
 - $\text{Rho} = 0.561$
- Relevance
 - 14.48% question threads conveys that relevance is correlated with user performance.
Experiment Setup

• Tasks:
 • Best Answer prediction
 • User ranking prediction

• Ground Truth
• SVMRank is adopted as the learning framework

• Evaluation Metrics:
 • P@n
 • MRR
 • NDCG@n
Experiment Results
Experiment Results

Best answer prediction MRR

Best answer prediction P@1

Best answer Prediction P@3
Experiment Results

User Ranking Prediction NDCG@1

User Ranking Prediction NDCG@5

User Ranking Prediction NDCG@3
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Conclusion

• Weibo knowledge is effective to improve prediction results on Zhihu

• Scalability
 • Recommendation system also experience serious cold start problem
 • The method can extend to many other third party startup websites to boost the system
Q&A