Knowledge Sharing via **Social Login**: Exploiting Microblogging Service for Warming up Social Question Answering Websites

Yang Xiao, Wayne Xin Zhao, Kun Wang, Zhen Xiao
NC&IS LAB, Peking University, China
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
The Social World

- Twitter: 555 million Users, 58 million Tweets Per Day
- Facebook: 1,310,000,000 Active Users, 18 minutes Spent Per Visit
- Weibo: 560 million Users
- Renren: 220 million Users
- Mobile QQ cover all smartphones.
Social Login

- Users can surf the Internet using **Consistent Identities**
- Collect crowds of users in **Short** time
- Gain **Reliable** user profiles
- Weibo Open API:
 - **600,000** third party websites, **60,000,000** external websites visits daily
However,

- Despite that social media data is **Abundant**, only **Simple** profiles are leveraged via social login...
- Mine **more value** from social login?
Community Question Answering
Zhihu Q&A site

• First social network based Q&A
 • User graph
 • User topic graph
 • User question graph

• High-quality questions and answers
 • True domain experts participation
 • Primary experience
Long Tail Phenomenon

• Most contributions in CQA services are made by a small number of users.
 • 85% of users answer fewer than 10 questions
 • 60% of users answer fewer than 4 questions
 • Hard to estimate users’ expertise

• New comers are prone to leave CQA services very soon

Make users on the long tail stay longer
Discover experts at an early stage
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• **Our Method**
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Bridge the gap
Bridge the gap

Candidates Rank = \(<\text{Weibo Footprints}\>) + \(<\text{Zhihu Performance}\>)
Weibo and Zhihu Features
Weibo: Relationship Perspective

- Users who have **higher prestige** tends to provide **better** answer

- PageRank
 - \(s^{n+1} = \mu M^T s^n + (1 - \mu) y \)

- **Performance Biased** Random Walk
 - \(y \) represents the user performance on Zhihu
Weibo: Content Perspective

• Users who are more interested in the question related topic tend to provide better answer.

• Model the relevance between a question and a user.

• Relevance: KL divergence

\[\text{Rel}(q, u) = - KL(\theta^q, \theta^u) = \sum_{\omega \in V} p(\omega | \theta^q) \log \frac{p(\omega | \theta^q)}{p(\omega | \theta^u)} \]
Weibo: Content Perspective

- θ^q estimation
 - Question sparsity problem
 - Translation model
 - $\theta^q_\omega \propto \sum_{t \in q} p(\omega, t) = \sum_{t \in q} p(\omega | t)p(t | q)$

- θ^u estimation
 - Tweets accumulation
 - $\theta^q_\omega = \frac{\#(\omega, u) + 1}{\sum_{\omega' \in \mathcal{V}} \#(\omega', u) + |\mathcal{V}|}$

Use tags to index questions
Zhihu Features

• In order to test Weibo effect, we take Zhihu features as baseline.

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Best Answers</td>
</tr>
<tr>
<td>Number of Answers</td>
</tr>
<tr>
<td>Number of Received Votes</td>
</tr>
<tr>
<td>Average Number of Votes</td>
</tr>
<tr>
<td>Smoothed Average number of Votes</td>
</tr>
<tr>
<td>Best Answer Ratio</td>
</tr>
<tr>
<td>Smoothed Best Answer Ratio</td>
</tr>
<tr>
<td>Average Answer Length</td>
</tr>
</tbody>
</table>
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Experiment Setup
Dataset

• Crawling Zhihu
 • Snowball-crawled Webpages
 • 266K users, 819K questions, 2.7 million answers
 • 50% of users log in using Sina Weibo account

• Crawling Weibo
 • Crawl the linked users’ weibo pages and relationships

• Dataset

<table>
<thead>
<tr>
<th>Users</th>
<th>Questions</th>
<th>Answers</th>
<th>Topics</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,742</td>
<td>335,145</td>
<td>883,373</td>
<td>44,333</td>
<td>21,121,955</td>
</tr>
</tbody>
</table>
Hypothesis testing

• Spearman Correlation Test
• Prestige
 • Grouping users into buckets
 • Rho = 0.561
• Relevance
 • 14.48% question threads conveys that relevance is correlated with user performance.
Experiment Setup

• Tasks:
 • Best Answer prediction
 • User ranking prediction

• Ground Truth

• SVMRank is adopted as the learning framework

• Evaluation Metrics:
 • P@n
 • MRR
 • NDCG@n
Experiment Results
Experiment Results

Best answer prediction MRR

<table>
<thead>
<tr>
<th>Threads</th>
<th>Baseline</th>
<th>Prestige+HisG</th>
<th>Baseline+Weibo</th>
</tr>
</thead>
<tbody>
<tr>
<td><=3</td>
<td>0.4</td>
<td>0.45</td>
<td>0.5</td>
</tr>
<tr>
<td><=5</td>
<td>0.45</td>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td><=10</td>
<td>0.5</td>
<td>0.55</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Best answer prediction P@1

<table>
<thead>
<tr>
<th>Threads</th>
<th>Baseline</th>
<th>Prestige+HisG</th>
<th>Baseline+Weibo</th>
</tr>
</thead>
<tbody>
<tr>
<td><=3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td><=5</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td><=10</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Best answer Prediction P@3

<table>
<thead>
<tr>
<th>Threads</th>
<th>Baseline</th>
<th>Prestige+HisG</th>
<th>Baseline+Weibo</th>
</tr>
</thead>
<tbody>
<tr>
<td><=3</td>
<td>0.56</td>
<td>0.6</td>
<td>0.62</td>
</tr>
<tr>
<td><=5</td>
<td>0.58</td>
<td>0.62</td>
<td>0.64</td>
</tr>
<tr>
<td><=10</td>
<td>0.6</td>
<td>0.64</td>
<td>0.66</td>
</tr>
</tbody>
</table>

The charts illustrate the performance of different models in predicting the best answer, measured by MRR and P@1/P@3, across different numbers of question threads.
Experiment Results

User Ranking Prediction NDCG@1

- <=3 question threads
- <=5 question threads
- <=10 question threads

Baseline | Prestige + HisG | Baseline + Weibo

User Ranking Prediction NDCG@5

- <=3 question threads
- <=5 question threads
- <=10 question threads

Baseline | Prestige + HisG | Baseline + Weibo

User Ranking Prediction NDCG@3

- <=3 question threads
- <=5 question threads
- <=10 question threads

Baseline | Prestige + HisG | Baseline + Weibo
Outline

• Motivation
 • Social Login
 • Cold start in CQA

• Our Method
 • System Design
 • Features

• Experiment
 • Experiment Setup
 • Results Analysis

• Conclusion
Conclusion

• Weibo knowledge is effective to improve prediction results on Zhihu

• Scalability
 • Recommendation system also experience serious cold start problem
 • The method can extend to many other third party startup websites to boost the system
Q&A