
CompSC: Live Migration with Pass-through Devices

ZHENHAO PAN &, YAOZU DONG *, YU CHEN &,

LEI ZHANG&, ZHIJIAO ZHANG&,
&Tsinghua University, *Intel Asia-Pacific Research and Development Ltd.

VEE 2012

Outline

• Introduction

• CompSC solution

• Experiments

• Conclusion

Introduction

• Background

o Live migration

o Pass-through device

o SR-IOV spec

• Experimental result

o Liv migration with SR-IOV NIC

o 282.66% more throughput

o 42.9% less downtime

Introduction

• SR-IOV Specification

IOVM

PCIM

• Start with a single function device

Á HW under the control of privileged SW

Á Includes an SR-IOV Extended Capability

Á Physical Function (PF)

• Replicate the resources needed by a VM

Á MMIO for direct communication

Á RID to tag DMA traffic

Á Minimal configuration space

Á Virtual Function (VF)

• Introduces PCI Manager (PCIM)

Á Conceptual SW entity

Á Completes the configuration model

Á Translates VF into a full function

Á Configures SR-IOV resources

VF VF

Shared
Resource

PF

Initialization and Configuration
DMA, PIO, and Interrupts

VM1

DD

VM0

DD DD

Physical
Function

Virtual
Function

dedicated

Related work

• Bonding driver [Linux Ethernet Bonding Driver HOWTO]

• Failover/Load balance

• NPIA (Network Plug-in Architecture)

Virtual Bridge

Native

Driver

Tap/Tun

Driver

Host

Linux

Kernel
KVM

Native

Driver

Bonding driver NPIA

Related work

• VMDq (Virtual Machine Device Queue)
– Multiple queue pairs for partitioning

Virtual Bridge

Native

Driver

Tap/Tun

Driver

file_operations

Host Linux

Kernel KVM

One copy for

transmission & receive

Xmit vqueue

(VQ 0)
Add_buf

Get_buf

pop

push

Add_buf

Get_buf

pop

push

Receive vqueue

(VQ 1)

Virtio -net

(Service)

Why not store/restore device states directly?

Outline

• Introduction

• CompSC solution

• Experiments

• Conclusion

CompSC Approaches

• Requirement challenges

– The state (such as registers) of the device needs to
be efficiently read and written to support device
state replication;

– The dirty memory written by the device Direct
Memory Access (DMA) needs to be efficient and
tracked for lazy memory state transmission.

CompSC Approaches

• interface ofHardware – OS

• Registers

• DMA

• Interrupts

Device Controller

read
write

control
status

Addressable
Memory
and/or
Queues

Registers

Hardware
Controller

Memory Mapped Region

Bus
Interface

address+data

Interrupt Request

Interrupt
Controller

DMA IO W/R

CPU

Bus

Memroy

address

• Requirement of I/O Register migration :

o Most parts: Read/write, No side effect

o Some special: RO/WO, RC/WC, etc., with side effect
Register type Description

read-write If written since reset, the value read reflects the value
written.

read-only Writes to this reg have no effect.

write-only Reading this reg returns no meaningful value.

read-write-clear A register can be read and written. However, a write of a
1b clears the corresponding bit.

write-clear Writing 1b to register clears an event possibly reported
in another register.

read-clear A register bit with this attribute is cleared after read.
Writes have no effect on the bit value.

read-write-set Register that is set to 1b by software, and cleared to 0b
by hardware.

reserved Reserved field can return any value on read access and
must be set to its initial value on write access.

CompSC Approaches

State replay for side effect

• Method

o Record every hardware access (Recording stage)

o Replay them on the target device (Replaying stage)

• Optimization 1

o Record last reg writing when this writing brings no side
effect

• Optimization 2

o Define operation sets (op set), the op sets is Critical
Section

CompSC Approaches

State replay – with op set

CompSC Approaches

Op sets in Intel 82576/82599 NIC
• All initializing operations
• All Sending operations
• All Receiving operations
• other remaining op states

include only {uninitialized, up,
down}

In this kind of set up, only the
latest operations on each
setting register and whether or
not the interface is up need to
be tracked.

Self-emulation for Read-only, etc. Regsiters

• Design for statistic registers (read-only/read-clear)

• Require mathematical attributes (monotonicity)

• Example: dropped packets counter

o = n before migration

o initialized to 0 when migration

o = m now (after migration)

o correct value= n + m

CompSC Approaches

• Dummy writing for DMA dirty page

– DMA dirty page tracking. To replicate the I/O state,
memory pages modified by the device DMA operations
must be efficiently tracked for efficient live migration.
Unfortunately, DMA dirty page tracking is not supported in
the existing I/O MMU.

– Dummy write the DMAed page after DMA process finished.

CompSC Approaches

Design & Implemenatation

CompSC Architecture

1. Pre-Migration stage
2. Reservation stage
3. Iterative Pre-copy stage
4. Stop-and-copy stage
5. Commitment stage
6. Activation stage

 live migration

CompSC Implementation

Xen and SR-IOV NIC drivers

Implementation complexity ~2000 LoC

• Intel 82576 Gbps NIC & 82599 10Gbps NIC

• PF/VF drivers

• Driver changes on IGBVF/IXGBEVF

o Rlock every hardware operation

o Pack igbvf_up/igbvf_down and
ixgbevf_up/ixgbevf_down into operation sets

o Restoration after migration

CompSC Implementation

Xen and SR-IOV NIC drivers

• Shared memory for sync

o rw-lock and version counter

o List of registers for I/O register migration

o List of registers for self-emulation

• Synchronization for Live Migration
o Acquire w-lock before suspending

o Increase version counter

o Release w-lock after migration

o Invoke driver restoration at first r-lock

CompSC Implementation

Xen and SR-IOV NIC drivers

• Pages dirtied by DMA

o In x86/x64, memory access by DMA cannot be
tracked on page tables by MMU, IOMMU

o In CompSC, driver performs dummy writes to
descriptor/buffer when receive an interrupt

o May cause packet miss/packet duplication during
migration

CompSC Implementation

Xen and SR-IOV NIC drivers

• Descriptor ring
o Descriptor ring head index is in read-only register

o Altering head index is hard (hard for state replay)

o CompSC introduces an offset between the ring in
hardware's view and software's view

o During migration, increase the offset to make sure ring
head index on target hardware is 0

Xen and SR-IOV NIC drivers

CompSC Implementation

Outline

• Introduction

• CompSC solution

• Experiments

• Conclusion

Experiments

• Physical Environment

o Intel Core i5 670 (with VT-x, VT-d, VT-c features)

o 4GB memory, 1TB hard disk

o Intel 82576 & Intel 82599 NICs

• Virtual Environment

o 4 vCPU

o 3GB memory

o PF/VF of Intel 82576 or Intel 82599 NIC

Evaluation - Throughput
Experiments

Intel 82599

9. 4 Gbps

 int: sel f-emulation

Evaluation - SPECweb2009
Experiments

Intel 82599

Evaluation - Live migration(Bonding v.s. CompSC), 82576 NIC

Experiments

Bonding

CompSC

Netperf

Evaluation - Live migration(PV v.s. CompSC), 82599 NIC

Experiments

PV

CompSC

Dom0 and the guest were sharing the physical CPU

Netperf

Consolution

• Proposed a directly solutons for live migration
of pass-through device : CompSC

– Support Live Migration with SR-IOV NIC

• Future

– Evaluate NPIA method

– Support Checkpoint (such as Remus in XEN)

– Other SR-IOV devices

– ...

Thank you for your attention!

Questions?

