
Detecting Heap Smashing Attacks Through Fault Containment Wrappers

Christof FETZER Zhen XIAO

fchristof, xiaog@research.att.com
AT&T Labs Research

180 Park Avenue
Florham Park, N.J. 07932

Keywords: fault tolerance, debugging support, system security

Abstract

Buffer overflow attacks are a major cause of secu-
rity breaches in modern operating systems. Not only are
overflows of buffers on the stack a security threat, over-
flows of buffers kept on the heap can be too. A mali-
cious user might be able to hijack the control flow of a
root-privileged program if the user can initiate an over-
flow of a buffer on the heap when this overflow over-
writes a function pointer stored on the heap. This paper
presents a fault-containment wrapper which provides ef-
fective and efficient protection against heap buffer over-
flows caused by C library functions. The wrapper inter-
cepts every function call to the C library that can write
to the heap and performs careful boundary checks before
it calls the original function. This method is transparent
to existing programs and does not require source code
modification or recompilation. Experimental results on
Linux machines indicate that the performance overhead
is small.

1 Introduction

Buffer overflow attacks are a major cause of secu-
rity breaches in modern operating systems. Many sys-
tems are written in the C or C++ programming lan-
guages which are optimized for high performance but
provide only limited error checking (see Figure 1). For
example, the strcpy(char *dst, const char
*src) function copies a string pointed to by src to
the location pointed to by dst. However, it is up to
the programmer to check whether the destination buffer
has sufficient memory space to accommodate the source
string. Unfortunately, such checks are often omitted in
existing programs. Missing checks could be exploited
by attackers to get unauthorized access to a computer.

A buffer overflow occurs when a function writes be-

Sourceforge Projects 10/18/2000
(8,296 open source projects)

Java
11%

Other
41%

C
27%

C++
21%C/C++

48%

Figure 1. A sampling of
www.sourceforge.com indicates that
a substantial percentage of open source
projects are still using C and C++.

yond the boundaries of the destination buffer and hence
overwrites the content immediately after or before it.
Generally this causes a memory corruption or a memory
fault of the program. However, it can also be exploited
maliciously to alter the control flow of a program in or-
der to break the security of the system. Depending on
whether a buffer is allocated on the heap or on the stack
one distinguishes between stack smashing attacks [5, 2]
and heap smashing attacks.

A stack smashing attack overwrites a return address
stored on the stack to change the control flow of a pro-
gram. For example, if the return address of a function is
stored after a buffer on the stack, a malicious user could
overwrite the return address of a root-privileged pro-
gram by overflowing a preceding buffer and redirect the
control flow of the program to a memory region where
some attack code is stored. In this way the attacker can
gain root privilege.

In contrast, a heap smashing attack overruns a heap

1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef int (*f_t)(char*);

void f0(char* p) f
unsigned char* q = (unsigned char*) &p;
printf ("last four chars of networkinput should be: nn%onn%onn%onn%onn",

q[0], q[1], q[2], q[3]);
g

void f1(char* p) f printf ("f1: %pnn", p); g

char *networkinput = "n150n157n144n145n12n150n143n153n40n143n150n101n164n164
n141n211n341n61n300n260n4n61n333n263n1n61n322n262n14n315n200n303n350n230n4n10";

int main() f
char* p = malloc (28);
f_t* f = malloc (sizeof(f_t)*2);
f[0] = (f_t) f0;
f[1] = (f_t) f1;
(*f[0])(p);
(*f[1])(p);
strcpy(p, networkinput);
(*f[0])(p);

g

Figure 2. Program with a heap smashing attack: it contains some attack code for Pentium
processors in networkinput. (networkinput has to be modified according to the output of
f1.)

buffer to change the control flow of a program. For ex-
ample, such an overflow could overwrite function point-
ers stored on the heap to redirect the control flow of a
program. Figure 2 illustrates a situation where a net-
work service with root privilege stores a function pointer
f after an allocated buffer p on the heap. Clients can ac-
cess this service by sending it network packets which are
stored in variable networkinput. All packets from
legitimate clients are supposed to be at most 28 bytes
long. An external attacker, however, may send an over-
sized packet containing some attack code. When the net-
work service executes the string copy operation to copy
networkinput to p, it would overwrite the function
pointer f[0] due to a missing boundary check. (Fig-
ure 3 compares the memory layout on the heap before
and after the strcpy call.) Consequently, when this
function pointer is called later on, the attacker can gain
root access to the computer by hijacking the control of
the root-privileged service.

Although less common, heap smashing attacks do oc-
cur in practice and can also be dangerous. For example,

the recent bind8 (DNS namer server) attack [11] uses
the heap smashing technique to gain root access to a re-
mote computer. Instead of overwriting function point-
ers, this attack writes malicious shell script code con-
tained in an attack packet on the heap of the server. The
attacker gains root access when the script is executed by
the bind8 server.

While safe programming languages like Java are
gaining popularity, many projects are still written in un-
safe languages like C and C++ (see Figure 1). In these
cases, the fundamental solution to buffer overflow at-
tacks relies on a safe coding style: a program should
avoid unsafe C library functions like strcpy and per-
form careful boundary checks. However, given the huge
volume of existing C and C++ programs, it is not possi-
ble to inspect and rewrite all of them to eliminate po-
tential buffer overflow problems. Furthermore, while
there exist preliminary tools [10] that detect a large class
of buffer overruns statically, users might not want to
wait until programs are fixed by their developers nor do
they have access to the source code of commercial soft-

2

p[0] p[27] gap pointer to
function f1

pointer to
function f2

Heap memory

pointer to
function f2

string copy operation

attack code
p[0] ... p[27] gap pointer to function f1

attack code
pointer to

(a) Before the strcpy operation (b) After the strcpy operation

Figure 3. Heap smashing attack as implemented in Figure 2.

ware. A solution that does not need source code access
is therefore highly desirable.

This paper presents our work on developing a fault-
containment wrapper (HEALERS) which effectively
protects existing programs from heap smashing attacks
caused by C library functions. The wrapper intercepts
every function call to the C library which could be ex-
ploited for heap buffer overflows and substitutes it with
a version that provides the same functionality but does
careful boundary checking. In the previous example,
our wrapper would make sure that the strcpy function
does not access any heap memory outside the allocated
buffer p. Moreover, our approach is transparent to exist-
ing programs and does not require source code access.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work in this area. We examine
previous work on preventing stack smashing attacks and
on developing memory debugging tools for C programs.
Section 3 describes the details of our technique. We
show how the wrapper can keep track of the memory
allocation status of a user program, check the boundary
of previously allocated buffers, and detect heap smash-
ing attacks. Section 4 evaluates the performance of our
method on two Linux platforms. The results demon-
strate that the overhead introduced by our wrapper is
small. Section 5 concludes this paper.

2 Related Work

Several proposals on preventing stack smashing at-
tacks have been made. StackGuard [3] is an extension
to the C compiler which prevents such attacks by insert-
ing a canary word adjacent to the return address of every
function on the stack. Before a function returns, it first
checks whether the canary word has been altered. If so,
the program assumes that an attack has happened and
hence refuses to jump to the location pointed to by the
return address. Consequently, an attacker cannot invoke
its code by changing the control flow of the program.
This approach, however, requires recompilation of the
source code and the attacker has to be prevented from
reading or guessing the canary word.

Libsafe [2] is a dynamically loadable C library which

intercepts all unsafe function calls and transparently pro-
tects processes against stack smashing attacks. This
approach does not eliminate stack buffer overflows.
Rather, it confines the scope of any potential buffer over-
flow to be within the current stack frame and hence pro-
tects the return address of the function from being cor-
rupted. Unlike StackGuard, this approach does not re-
quire the recompilation of the source code. Our wrapper
actually uses the same mechanism as Libsafe to confine
stack smashing attacks. Therefore, we do not repeat the
discussion in this paper. Unlike Libsafe, our wrapper
also prevents heap smashing attacks.

Purify [4] is a software debugging tool that detects
memory faults and leaks. It inserts checking instruc-
tions for every memory access operation performed by
the program. Purify provides comprehensive checking
for memory access errors, not just for buffer overflows.
In particular, it uses an adaptation of garbage collection
techniques to detect memory leaks that usually do not
produce directly observable errors. However, to per-
form these checks it slows down the execution speed
of the program by a factor of 2 to 3. While this is not
a problem for debugging a faulty program, it is not ac-
ceptable if installed as a security protection mechanism
on a system-wide basis.

ElectricFence [6] is a public domain heap debugging
tool. It uses memory protection techniques to detect
heap buffer overflows. It places a read and write pro-
tected memory page after each buffer allocated. In this
way, a buffer overflow will cause a segment violation.
Memory that has been released is also memory protected
to detect access to already freed memory. ElectricFence
uses two virtual pages per allocated buffer and slows
down execution considerably. It is only intended for de-
bugging purposes.

Safe-C [1] uses source-level transformations to make
C pointers safe. The idea is that additional meta-data
is kept for each pointer such that access errors can be
detected during run-time. The overhead was reported
between 130% and 540%. Our approach keeps the
meta-data for each allocated block as opposed to every
pointer. It does not need the source code of a program
and has an overhead of typically less than 12%. On the

3

other hand, Safe-C can detect buffer overflows that are
caused by any function (not necessarily C library func-
tions) as well as overflows of buffers that are contained
within other buffers.

Vmalloc [8] is a library that extends the malloc func-
tion in the Standard C library to give applications bet-
ter control on memory allocation methods. Applications
can specify how to obtain new memory from the heap
(e.g. best-fit strategy) as well as change the layout of
existing memory regions. Unlike other malloc imple-
mentations, Vmalloc provides clients with the function-
ality to determine for any given address if this address
belongs to an allocated heap block and the start and end
address of this block (if it exists). If a system uses Vmal-
loc, we could simplify our wrapper since we do not need
to perform additional state keeping for allocated blocks.

3 Description of the technique

Our goal is to protect existing software against heap
smashing attacks caused by C library functions even if
the source code is unavailable. Furthermore, we want
to help software developers by performing most bound-
ary checks automatically for them. We implement our
checks as a dynamically loadable C library wrapper.
The wrapper intercepts every function call to the C li-
brary which could be used to write to the heap and
performs careful boundary checks before it invokes the
original function.

Previously, software wrappers have been used for
fault-tolerance and exception handling [9, 7] as well as
for detecting stack smashing attacks [2]. A nice feature
of this approach is that it requires no source code modi-
fication or recompilation. On most Unix systems a user
interested in using a wrapper can preload it by defining
the LD PRELOAD environment variable. This is useful
for protecting certain network services. In addition, a
system administrator can enable a wrapper on a system
wide basis through a dynamic link loader. We have de-
veloped and tested our wrapper on Linux systems. How-
ever, it can be ported to other systems that provide an
appropriate interface to the dynamic link loader. Note
that the wrapper only works with programs that are dy-
namically linked with the C library. This is typically
no restriction since almost all programs appear to be dy-
namically linked.

3.1 Keeping track of blocks

In order to perform boundary checks of allocated
buffers, we need to keep track of the memory alloca-
tion status on the heap. The difficulty is that the ex-
isting interface of malloc in the standard C library is

very simple: it only returns the start address of the al-
located memory. In order to perform boundary checks,
programmers either have to keep track of the allocated
blocks or use systems with better debugging support like
Vmalloc [8].

Since our goal is to transparently protect existing
software even if the source code is unavailable, we use
a wrapper to keep track of the allocated blocks and to
perform the boundary checks. When a program exe-
cutes p=malloc(size), it invokes the version in our
wrapper which in turn invokes the malloc function
in the C library to perform the memory allocation and
then records the position and size of allocated memory
in an internal table. Later when the program executes
free(p), the wrapper removes the corresponding en-
try from its table. By doing so the wrapper can be kept
up to date with the current memory layout. We describe
in Sections 3.3 and 3.4 two alternative algorithms to
keep track of memory layout on the heap.

3.2 Boundary Checking

We define two variables heap start and
heap end that keep track of the start and the end
of the heap. To determine the “range” of a pointer,
we implement the following function. Function
range(p) returns a value < 0 if p does not belong to
a block allocated on the heap. Otherwise, range(p)
returns the number of bytes between p and the end of
the allocated block. Figure 4 illustrates three calls to
function range.

Using the function range and the variables
heap start and heap end, we can test if a str-
cpy(dst, src) operation would result in a heap
smashing. We have to test that if the address range of the
copied string [dst, dst+strlen(src)+1]1 over-
laps with the address range of the heap [heap start,
heap end], then the range of the destination pointer
(range(dst)) is longer than the length of src
(strlen(src)). Note that it has to be strictly longer
to account for the terminating zero. More precisely, we
can express this condition as follows. Let s be the length
of string src, i.e., s = strlen(src). Calling str-
cpy(dst, src) does not result in a heap smashing
only if one of the following conditions is true:

� dst > heap end

� dst+s+1 < heap start

� s < range(dst)

However, it still might result in a stack smashing or
smashing of other data areas like the static data section.

1We need to check for integer arithmetic overflow.

4

range()=

heap_start =

s1 s2 s3

1a b1 a2 b2 3a b3 a4 b4

s1

1a 4b

s2 s3range()=−1
b1 1s s2b3 − +1

block 3 block 4gap gap gap

heap_end =

range()=

− +1

block 1 block 2

Figure 4. Range of three addresses: s1, s2, and s3.

The wrapper can be configured to evaluate additional
conditions that prevent stack smashing attacks. Option-
ally, it can prevent any smashing caused by C library
functions by preventing them to write to any location
outside the heap and the stack. If a smashing attack is
detected, the wrapper logs an error message and aborts
the program.

3.3 Red/Black Tree

Our first implementation of range(p) searches
through all previously allocated memory blocks to find
the one that contains p. This method, however, requires
an efficient algorithm to search through entries in the
internal table to locate the appropriate memory block.
For efficiency, we organize the entries in the table as a
Red/Black tree. Each node in the tree corresponds to an
allocated memory block. The key consists of the start
and end address of the block. Note that since the ad-
dresses of blocks are non-overlapping, there is a total
order between these address ranges. It is well-known
that the complexity of search, insert, and remove oper-
ations in a Red/Black tree is logarithmic to the number
of entries in the tree. Hence the protocol is reasonably
efficient for large tables.

3.4 Magic Number

Our second implementation of range(p) uses a
special data structure to reduce the complexity of inserts
and removes. In this solution we add an header to each
allocated memory block to store certain meta data. The
size and the address of each allocated block is kept in a
separate table. The amount of memory the wrapper allo-
cates is slightly larger than what is returned to the user as
illustrated in Figure 5. One component of the meta data
is a magic number: a carefully chosen number which is
unlikely to appear in ordinary user program. The magic
number marks the beginning of a memory block. The
second component is an index into the table. The entry
of the table contains the address of the allocated block
and its size.

Function range(p) searches the memory preced-
ing pointer p for the magic number. If a word does not
match the magic number, then it cannot be the start of a
memory block. On the other hand, if a match is found,
then it is likely that we found the starting point. How-
ever, because a magic number can occur inside a user
region coincidentally, the wrapper still needs to consult
its table to verify whether the corresponding address is
indeed the start of a memory block. (This also makes
sure that the magic number was not inserted by a mali-
cious user in an attempt to foul the wrapper.) The wrap-
per first checks whether the index points to a valid entry
in the table. If so, it then compares the address of the
magic number and the address stored in the entry to see
whether they are the same. If both tests succeed, we
know that the start of the allocated buffer is found. The
wrapper then computes the range of p by taking the dif-
ference between the end address of the allocated block
and p (plus 1). This difference is non-negative only
if p belongs to an allocated block. The search for the
start address ends when either the first allocated block
is found or when the search reaches the boundary of the
heap (in the latter case it returns�1). We call this a lin-
ear search algorithm because the amount of search time
is linear with respect to the offset of p from the start of
the memory block (every word could potentially be the
starting point).

Ideally, we want to reduce the number of compar-
isons when searching for the magic number. The num-
ber of search steps can be reduced by 50% by aligning
the 32-bit magic number on a 64-bit boundary. This
permits the wrapper to compare the magic number only
with every second 32-bit word. Moreover, this align-
ment can be done without additional memory overhead:
the index can be placed either before or after the magic
number to align it appropriately. When a magic number
is found, the search algorithm can then test if the word
before or after the magic number is a valid index.

We can generalize this optimization to reduce the
number of search steps to be logarithmic with respect
to the offset of p. This is achieved by restricting the
start address of every allocated memory block to be a
power of 2: let msb(S) be the value of the most signifi-

5

pointer returned
to user program

Meta Data

Size

Index
Magic

number

...
...

Size

memory available to user program

table

In
de

x

32bit 32bit

E
nt

ri
es

Start

allocated block
start of

offset of p

p

range of p

Figure 5. The magic number is used to locate the start of a memory block.

cant bit of the binary representation of S. For example,
msb(2210) = msb(101102) = 100002 = 1610. We
align the start address of a memory block of size S at
a msb(S) byte boundary. This can be achieved through
the memalign library function or its equivalents. By
aligning a memory block at a boundary proportional to
its size, the set of addresses which could be the start of
the block has been substantially reduced. This in turn
reduces the number of search steps to find the magic
number: given a pointer, we first check whether the next
smaller 32-bit aligned word contains the magic number.
If not, we know that the block is bigger than 32-bit. We
then check the next smaller 64-bit aligned word. If this
also fails, we know that the block is bigger than 64-bit
and we can look at 128-bit aligned words, etc. The dis-
tance between consecutive words that are checked for
the magic number increases exponentially. In effect, we
have turned the previously linear search into a logarith-
mic search in that the number of search steps is logarith-
mic to the offset of the dst pointer.

There is, however, a tradeoff between search time
and memory usage as well as allocation overhead. Al-
though logarithmic search reduces the amount of search
time, it may introduce memory fragmentation and may
also increase the allocation time. The implementation
of memalign(alignment, size) that we use al-
locates a sufficiently big junk of memory and then frees
memory to align the block at an alignment byte
boundary. Due to the additional work, there is a notice-
able performance overhead associated with the mema-
lign function call (see Section 4 for details). This
raises the question as whether the benefit of the reduc-
tion in search time would outweigh the additional over-
head due to the memalign call. The answer depends on
the offsets experienced in string copy operations: linear
search is preferable for small offsets due to its low over-

head and better memory utilization, while logarithmic
search is desired for large offsets because it can substan-
tially reduce the number of search steps.

Ideally, an algorithm should adaptively switch be-
tween these two strategies. In fact, for a particular appli-
cation, it is possible to analyze its memory access pat-
tern and select an appropriate strategy. However, our
goal is to develop a generic wrapper suitable for any ap-
plication. Consequently, we designed a hybrid search
algorithm: when a program executes malloc(size),
the wrapper invokes the original malloc function if
the size of allocated memory is smaller than a certain
threshold thresh. Otherwise, the wrapper aligns the al-
located memory as described above in order to reduce
the amount of search time. When the program later ex-
ecutes range(dst), the wrapper first performs linear
search for up to thresh steps. If it cannot find the start ad-
dress of the memory block, then it switches to logarith-
mic search2. This guarantees that the wrapper can have
reasonably good performance for all situations. Note
that linear search can be viewed as hybrid search with
thresh =1 and logarithmic search as hybrid search with
thresh = 0.

Table 1 compares the complexity of different solu-
tions discussed in this section. For both linear search and
logarithmic search, it takes constant time to insert an en-
try into the internal table or remove an entry from the ta-
ble. The advantage of logarithmic search is to reduce the
complexity of search operation. Note that hybrid search
(with a constant thresh) has the same complexity as log-
arithmic search, which has the best complexity among
all three approaches. We investigate in Section 4 if this

2Note that we cannot skip the initial linear search phase since we
do not know that the block enclosing dst is greater than thresh. How-
ever, one could skip this phase if blocks of size smaller than thresh are
allocated in a different region than block of size greater than thresh.

6

Algorithm search insert remove

Red/Black tree O(log(entries)) O(log(entries)) O(log(entries))
linear search O(offset) O(1) O(1)
logarithmic search O(log(offset)) O(1) O(1)
hybrid search O(log(offset)) O(1) O(1)

Table 1. Complexity of the investigated heap overflow detection methods.

results in some real performance benefits.

3.5 Implementation Issues

As described previously, our wrapper intercepts ev-
ery C library function call which is related to memory
operations. When an application program calls mal-
loc, for example, it invokes the malloc function in
our wrapper. The wrapped malloc function then needs
to resolve the original malloc function in the C li-
brary through an interface function dlsym of the dy-
namic link loader. (This only needs to be done when
the wrapped malloc is called for the first time.) In
some situations, however, the dlsym function may ac-
tually attempt to allocate memory by calling malloc.
In UNIX (unlike in Windows), this results in another call
to the wrapped malloc. If the wrapper again calls dl-
sym to resolve the original malloc function, it leads
to an indefinite recursion which ultimately ends up with
stack overflow.

We address this problem by associating a recursion
detection variable with malloc. This variable records
whether the wrapped malloc has been called previ-
ously. If so, then the wrapper does not call dlsym again
to resolve the original malloc. Instead it returns an
empty pointer. The GNU implementation of dlsym that
we use in this case uses a static buffer for the resolution
of malloc. For other implementations of dlsym func-
tion the wrapped malloc could return statically allo-
cated memory until the original malloc is resolved.

Another implementation problem we encountered is
when an application calls realloc to increase the size
of a previously allocated block. When the logarithmic
or hybrid search approach is used, the alignment bound-
ary of an allocated block depends on its size. Hence in-
creasing the size of a block might require a realignment
of the buffer. In this case, our implementation allocates
a new block that is appropriately aligned, copies the old
user data, and then frees the old block. This is consis-
tent with the semantics of realloc which also copies
a block in case it cannot resize it at its current address.

4 Performance Measurements

This section evaluates the performance of our wrap-
per on two different architectures:

� a 450MHz Pentium II with 256MByte of memory;

� a 900 MHz Atlon with 784 MByte of memory.

We focus on the performance of four utility programs:
tar, gzip, gcc, and ps2pdf. They represent a spectrum
from I/O bound applications (like tar) to CPU bound
applications (like gzip). We compare the performance
of the two solutions proposed in the previous section:
using Red/Black tree versus using magic number. In the
latter case, we also compare the performance of differ-
ent search algorithms. In this paper, we mainly present
results on the Atlon machine. Results on the Pentium
machine are similar and hence omitted due to lack of
space.

4.1 Memory Access Patterns

We first present some statistics on the memory access
patterns of the four utilities. This is important because
the optimal solution for a particular application depends
on its memory access patterns. For example, the choice
between linear search and logarithmic search depends
on the offsets that arise in string copy operations as ex-
plained in the previous section. Logarithmic search is
efficient in reducing search steps for large offsets, but
pays a higher overhead when allocating blocks and also
leads to memory fragmentation. This raises the question
as how often large offsets occur in practice. To answer
this question, we measured the offsets of the following
C string library functions: strcpy, strncpy, str-
cat, and strncat. While functions strncpy and
strncat are typically assumed to be safe, we also en-
abled run-time checks for these functions to check that
the passed string sizes are accurate. Figure 6 shows the
results for the tar program. The figure indicates that a
substantial fraction of string function calls are with small
offsets. For example, about 40% of string copy opera-
tions in tar are called with an offset 0. However, the
remaining 60% of these calls can have an offset of up

7

to 10000 bytes. Similar trends have been observed for
other programs we measured. These results suggest that
hybrid search is a viable approach both for minimizing
allocation overhead for small offsets and for reducing
search steps for large offsets.

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

size of malloc (#bytes)

pe
rc

en
ta

ge
 (

%
)

Figure 6. Offsets measured when calling C
library string copy functions for the tar pro-
gram. The graphs also contain the cumu-
lative percentage of the offsets measured.

The overhead for wrapping a function is minimal.
On the 450MHz Intel Pentium II we measured that in-
serting an empty wrapper has an execution time over-
head of about 76ns. The boundary checks performed by
a wrapper is another factor that affects the the perfor-
mance overhead. Intuitively, the more frequent an appli-
cation performs boundary checks, the higher the penalty
will be. Table 2 shows the functions we wrapped for our
measurements and the number of wrapped function calls
for the four utilities. For example, the table indicates that
gcc invokes a large number of free calls. Whenever a
memory region is freed, the wrapper needs to consult
its internal table to verify that the freed pointer is valid.
This helps explain some of the observed performance
overhead described later in this section.

4.2 Malloc Overhead

Our wrapper needs to update certain data structures
whenever a memory block is allocated. In the Red/Black
tree solution, each block that is allocated needs to be in-
serted into the tree. In the hybrid search solution, the
wrapper needs to initialize certain meta data at the begin-
ning of the allocated block and update the entries in its
internal table accordingly. Moreover, for blocks larger
than a certain threshold, the wrapper needs to call the
memalign function to align the allocated block at an

appropriate boundary. In the GNU implementation of
memalign (glibc-2.1.2), this is achieved by first allo-
cating a sufficiently large block and then freeing a prefix
of it. We have found that for large blocks this results
in a substantial slow-down with respect to the original
malloc function of the C library. Figure 7 investigates
the performance overhead for allocating memory blocks
with different block sizes.

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

tim
e

(m
ic

ro
se

co
nd

s)
size (Kbytes)

"malloc_original"
"memalign_original"

"memalign_touchfirst"
"malloc_wrapped"

"malloc_rbtree"

Figure 7. Time to allocate block for hybrid
search and Red/Black trees in a 900MHz At-
lon (mean of 100 executions trimmed 10%).

As can be seen from the malloc_original and
malloc_rbtree graphs in Figure 7, the wrapper in-
curs a negligible overhead when using a Red/Black tree,
but a noticeable overhead when using magic numbers
(graph malloc_wrapped). The overhead of using
magic numbers for very large blocks can be explained
by the fact that in modern operating systems memory
pages are allocated on demand: an allocated page is
mapped to a physical page when the page is accessed
for the first time. For large blocks, malloc suffers one
page fault because malloc inserts meta data before the
start of the block (see graphmalloc_original). Be-
cause the implementation of memalign splits a block
into two blocks, it writes two sets of meta data and
hence, suffers two page faults for very large blocks (see
graph memalign_original). When using magic
numbers, our wrapper needs to insert the magic num-
ber at the beginning of the allocated block. For large
blocks this magic number is written at the start of a
page break. This introduces another page fault since the
meta data of malloc is stored at the end of the pre-
ceding page. This explanation is supported by graph
memalign_touchfirst which displays the time of
performing memalign plus the time of writing the first
byte of the allocated block. Since most applications will
touch the allocated memory region, we expect that the

8

Function tar gzip gcc ps2pdf

malloc 169 (55.78%) 3 (16.67%) 27618 (46.92%) 9576 (37.27%)
calloc 6 (01.98%) 1 (05.56%) 197 (00.33%) 5 (00.02%)
realloc 0 (00.00%) 0 (00.00%) 38 (00.06%) 0 (00.00%)
free 41 (13.53%) 2 (11.11%) 17418 (29.59%) 9564 (37.22%)
strcpy 30 (09.90%) 1 (05.56%) 8995 (15.28%) 115 (00.45%)
strncpy 44 (14.52%) 1 (05.56%) 3397 (05.77%) 0 (00.00%)
strcat 0 (00.00%) 0 (00.00%) 694 (01.18%) 103 (00.40%)
fileno 6 (01.98%) 4 (22.22%) 5 (00.01%) 0 (00.00%)
fread 0 (00.00%) 0 (00.00%) 475 (00.81%) 6331 (24.64%)
signal 7 (02.31%) 6 (33.33%) 24 (00.04%) 0 (00.00%)
total 303 (100.0%) 18 (100.0%) 58861 (100.0%) 25694 (100.0%)

Table 2. Number of wrapped function calls (some were called by the “measurement” wrapper).

overhead of at least one of the two additional page faults
of the wrapped malloc will be amortized later on.

4.3 Search Overhead

Before a wrapped function (e.g., strcpy) writes
into a memory region, it calls range to determine
whether the destination buffer has sufficient space. For
the hybrid search algorithm, the number of comparisons
needed by the wrapper depends on the selected threshold
thresh.

To measure the total search execution time over-
head of our algorithms, we extracted the memory al-
location and search patterns of the four utilities using
a “measurement” wrapper. We used the data to gener-
ate micro-benchmarks which call the wrapped functions
with the same offsets, i.e., they have the same search be-
havior as the utilities. The micro-benchmarks execute
nothing else than the wrapped functions. We approx-
imate the search time overhead of the four utilities by
measuring the difference in the execution times of the
micro-benchmarks with and without a wrapper. Figure 8
shows the execution time overhead of hybrid search in a
900MHz Atlon with respect to the threshold.

We used the same micro-benchmarks to compare the
search time overhead of Red/Black trees versus loga-
rithmic search for two different architectures and show
the results in Figure 9. The reported execution time
overhead is the mean of 100 execution time differences
trimmed 10%. (The trimming filters noise introduced by
the benchmark programs getting dispatched.) The over-
head of logarithmic search (i.e., thresh = 0) is in most
cases better than that of Red/Black trees.

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

O
ve

rh
ea

d
[m

ic
ro

se
co

nd
]

Threshold [KByte]

tar
gzip
gcc

ps2pdf

Figure 8. Search time overhead for hybrid
search in a 900MHz Atlon.

tar gzip gcc ps2pdf
0

100

200

300

400

500

600

se
ar

ch
 o

ve
rh

ea
d

(µ
 s

ec
)

186 179

132 124

89

123

4 5

526

360

314

201

49 42 48 55

R/B tree, Pentium
Log search, Pentium
R/B tree, Atlon
Log search, Atlon

Figure 9. Comparison of search overhead
between Red/Black tree and logarithmic
search.

9

4.4 Application Speed

We measured the overall performance overhead of
the four utility programs using hybrid search and us-
ing the Red/Black tree. The results are shown in Fig-
ure 10. The performance overhead can be explained due
to the allocation/free overhead, the search time to find
the meta-data of an allocated block, the wrapping time of
function calls, and the time to preload the wrapper. The
difference in the number of wrapped functions called is
given in Table 2. Based on our performance measure-
ments, we use hybrid search with a general threshold of
7 bytes in our wrapper. If the behavior of a program is
known, using a higher threshold can be advantageous.

tar gzip gcc ps2pdf

−5

0

5

10

15

20
R/B tree, Pentium
Hybrid search, Pentium
R/B tree, Atlon
Hybrid search, Atlon

Figure 10. Execution time overhead for two
different architectures (mean of 100 execu-
tions trimmed 10%).

In summary, our hybrid search wrapper (threshold of
7) is slightly faster than the Red/Black tree wrapper. On
the other hand, the Red/Black tree solution has advan-
tages with respect to memory fragmentation and mem-
ory allocation time. Ideally, one could use the same
Red/Black tree for implementing malloc and range
and in this way avoid the double bookkeeping.

5 Conclusion

Buffer overflow attacks are a major cause of secu-
rity breach in existing operating systems. We have pre-
sented a fault-containment wrapper which provides effi-
cient protection against heap smashing attacks caused
by C library functions. The wrapper keeps track of
the memory allocation status by intercepting memory
related C library function calls and performs careful
boundary checking before calling the original function.

We have investigated two different strategies to find
the “range” of a pointer: Red/Black trees and hybrid
search. We installed the wrapper on Linux machines
and evaluated its performance for several common ap-
plications. The wrapper is reasonably efficient for both
strategies.

References

[1] Todd M. Austin, Scott E. Breach, and Gurindar S.
Sohi. Efficient Detection of All Pointer and Array
Access Errors. In Proceedings of the ACM SIG-
PLAN ’94 Conference on Programming Language
Design and Implementation, June 1994.

[2] Arash Baratloo, Navjot Singh, and Timothy Tsai.
Transparent run-time defense against stack smash-
ing attacks. In USENIX Annual Technical Confer-
ence, San Diego, California, June 2000.

[3] Crispin Cowan et al. Stackguard: Automatic adap-
tive detection and prevention of buffer-overflow at-
tacks. In Proceedings of the 7th USENIX Security
Symposium, San Antonio, Texas, January 1998.

[4] Reed Hastings and Bob Joyce. Purify: Fast detec-
tion of memory leaks and access errors. In Proceed-
ings of the Winter USENIX Conference, 1992.

[5] Aleph One. Smashing the stack for fun and profit.
In Phrack Magazine, 1998.

[6] Bruce Perens. ElectricFence:
ftp://ftp.perens.com/pub/ElectricFence/

[7] Frederic Salles, Manuel Rodriguez, Jean-Charles
Fabre, and Jean Arlat. Metakernels and fault con-
tainment wrappers. In International Symposium on
Fault-Tolerant Computing, 1999.

[8] Kiem-Phong Vo. Vmalloc: A general and efficient
memory allocator. In Software Practice and Experi-
ence, March 1996.

[9] Kiem-Phong Vo and Yi-Min Wang. Xept: A soft-
ware instrumentation method for exception han-
dling. In the Eighth International Symposium on
Software Reliability Engineering, 1997.

[10] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A First Step Towards Auto-
mated Detection of Buffer Overrun Vulnerabilities.
In Proceedings of the Network and Distributed Sys-
tem Security Symposium, 2000.

[11] http://www.securityfocus.com/˜vdb/˜-
bottom.html?vid=2302

10

