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1. INTRODUCTIONIt is 
ommonly agreed that Web tra�
 follows the Zipf-likedistribution, whi
h is an analyti
al foundation for improvingWeb a

ess performan
e by 
lient-server based proxy 
a
hingsystems on the Internet. However, some re
ent studies haveobserved non-Zipf-like distributions of Internet media traf-�
 in di�erent 
ontent delivery systems. Due to the varietyof media delivery systems and the diversity of media 
on-tent, existing studies on media tra�
 are largely workloadspe
i�
, and the observed a

ess patterns are often di�erentfrom or even 
on�i
t with ea
h other. For Web media sys-tems, study [3℄ reports that the a

ess pattern of streamingmedia is Zipf-like in a university 
ampus network, while study[2℄ �nds that it is not Zipf-like in an enterprise media server.For VoD media systems, study [1℄ �nds that it is not Zipf-likein a multi
ast-based Media-on-Demand server of a 
ampusnetwork, while study [9℄ reports it is Zipf-like in a large VoDstreaming system of an ISP. For P2P media systems, study [4℄reports that the a

ess pattern of media workload in KaZaasystem 
olle
ted in a 
ampus network is not Zipf-like, whilestudy [5℄ reports that it is Zipf-like in another 
ampus net-work. For live streaming media systems, study [8℄ reports it isZipf-like while study [6℄ reports it is not Zipf-like. A numberof models have been proposed to explain the observed mediaa

ess patterns, su
h as the generalized Zipf-like model [7℄,�fet
h-at-most-on
e� model [4℄, and two-mode Zipf model [6℄.However, ea
h of these models 
an only explain a very limiteds
ope of measurement results. A general model of Internetmedia a

ess patterns is highly desirable for tra�
 engineer-ing on the Internet and is 
riti
al to design, ben
hmark, andevaluate Internet media delivery systems.In this study, we have analyzed a wide variety of mediaworkloads on the Internet. The workloads were 
olle
ted fromboth the 
lient side and the server side in Web, VoD, P2P,and live streaming environments between 1998 and 2006. Theduration of these workloads ranges from a few days to morethan two years and the user population ranges from severalthousands to more than one hundred thousand. The numberof 
lient requests ranges from tens of thousands to hundreds
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of million, and the number of obje
ts in ea
h workload rangesfrom several hundreds to several million. Through extensiveanalysis, we �nd that the referen
e ranks of media obje
tsin all sixteen workloads follow the stret
hed exponential(SE) distribution, and a biased measurement may lead toa Zipf-like observation on media a

ess patterns. With su
ha request pattern, the temporal lo
ality in media systems ishard to exploit by 
lient-server based 
a
hing systems. Thestret
hed exponential model implies that peer-to-peer 
ollab-orative 
a
hing systems 
an e�e
tively deliver Internet media
ontent. Current te
hnology advan
ements su
h as PPLiveand BitTorrent have demonstrated the strong advantages ofP2P 
ollaboration on the delivery of Internet media 
ontent.
2. THE STRETCHED EXPONENTIAL DIS-

TRIBUTION OF MEDIA TRAFFICFigures 1(a), 1(b), 1(
), and 1(d) show the referen
e rankdistributions of media obje
ts in typi
al Web, VoD, P2P, andLive media systems, respe
tively. In ea
h �gure, the x 
oor-dinate represents the referen
e rank of ea
h obje
t, plottedin log s
ale, while the y 
oordinate represents the number ofreferen
es to this obje
t, plotted in both log s
ale (markedon the right of y-axis) and a powered s
ale (by a 
onstant
c, as marked on the left of y-axis). These �gures show thatthe referen
e rank distributions of all these workloads 
annotbe �tted with a straight line in a log-log s
ale, meaning theyare not Zipf-like. Instead, by sele
ting a proper 
onstant c,all these workloads 
an be well �tted with a straight line inlog-yc s
ale. Su
h a distribution is 
alled a stret
hed exponen-tial distribution. As marked in the �gures, the 
oe�
ient ofdetermination of the stret
hed exponential �tting result, R2,is very 
lose to 1 for all workloads.The 
umulative probability fun
tion of a stret
hed expo-nential distribution 
an be expressed as

P (X < x) = 1 − e
−( x

x0
)c

, (1)where c and x0 are 
onstants. If we rank the N obje
ts inthe workload in des
ending order of their referen
e numbers
yi (1 ≤ i ≤ N), we have P (yn > yi) = i/N . So the referen
erank distribution 
an be expressed as follows

yc

i = −a log i + b (1 ≤ i ≤ N), (2)where a = xc

0 and b = yc

1. Sin
e b is a normalization param-eter, the shape of an SE distribution is determined by c, thestret
h fa
tor of y 
oordinate, and a, the slope of the straightline in log-yc s
ale.For on-demand media systems, the stret
h fa
tor c of theobje
t referen
e rank distribution is highly related with the
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(d) Live media systemFigure 1: Referen
e rank distributions of di�erent kinds of media systemssizes of �les in the system. In general, for media workloads de-livered by similar kinds of systems or te
hniques, the stret
hfa
tors of their 
orresponding obje
t referen
e rank distribu-tions in
rease with their median �le sizes; for workloads withsimilar median �le sizes, the stret
h fa
tors of their 
orre-sponding obje
t referen
e rank distributions are similar re-gardless of their underlying media systems and delivery te
h-niques. Furthermore, for obje
ts a

essed in di�erent timeperiods in a media system with roughly 
onstant obje
t birthrate, the stret
h fa
tor c of 
orresponding referen
e rank dis-tributions is a time-invariant 
onstant.For media systems with roughly 
onstant request rates andobje
t birth rates over time, the parameter a (the slope of theSE line in log-yc s
ale) of the obje
t referen
e rank distribu-tion in
reases with its stret
h fa
tor c and the average numberof requests per obje
t in the workload. Furthermore, due tothe in
rease of the average number of requests per obje
t overtime, parameter a in
reases with the length of the workloadduration gradually but 
onverges to a 
onstant, whi
h is de-termined by the ratio of the media request rate to the obje
tbirth rate and the stret
h fa
tor c.For a stret
hed exponential referen
e rank distribution withslope a in log-yc s
ale and total N obje
ts, the di�eren
e be-tween this distribution and its 
orresponding Zipf-like modelin log-log s
ale in
reases with a log N . For a workload withlarge media �les, both the average number of requests perobje
t and the stret
h fa
tor c are large. Thus a is large, andthe di�eren
e between its referen
e rank distribution and the
orresponding Zipf-like model is large. For a workload withsmall media �les, the di�eren
e between its referen
e rank dis-tribution and the 
orresponding Zipf-like model is also largewhen the workload duration is long enough (at least monthsto years).
3. IMPLICATIONS ON MEDIA CACHINGInternet media obje
ts 
ommonly have long lifespans be-
ause they are seldom updated and have low produ
tion rates
ompared to Web obje
ts. Most requested media obje
ts are
reated long time ago, and most media requests are for ob-je
ts 
reated long time ago. For example, for a media work-load 
olle
ted at a large residential 
able network in 2005,more than 50% requested obje
ts are 
reated at least 250days ago, and more than 50% requests are for obje
ts olderthan 150 days.The temporal lo
ality in a 
omputer system 
omes fromthe 
on
entration and 
orrelation of requests to the 
ontentin the system. During a short period su
h as one week, thepopularity of media obje
ts is almost stationary, thus the

temporal lo
ality mainly 
omes from the request 
on
entra-tion. We have modeled the optimal hit ratios of typi
al shortterm media workloads and Web workloads, where request
on
entration dominates the temporal lo
ality. In su
h 
ases,
a
hing of media (SE) workload is far less e�
ient than thatof Web (Zipf) workload. For example, assuming all obje
tsare 
a
hable and have the same �le size, 
a
hing 1% Web
ontent 
an a
hieve about 40% hit radio, while 
a
hing 1%media 
ontent 
an only a
hieve 18% hit ratio, even thoughthey have the same hit ratio with an unlimited 
a
he.Nevertheless, the request 
on
entration in a media work-load (parameter a) in
reases with time. Furthermore, dueto the long lifespan of media obje
ts, the request 
orrelationbe
omes important with time. With a mu
h higher temporallo
ality, long-term 
a
hing 
an have a high hit ratio greaterthan 85% with 
a
hing 10% 
ontent. However, it may takemonths to years and a huge amount of storage to a
hievesu
h an improvement, for whi
h peer-to-peer te
hniques 
anbe mu
h e�e
tive.
4. CONCLUSIONOur study shows that Internet media a

ess patterns fol-low the stret
hed exponential distribution. Thus, the perfor-man
e of media 
a
hing with a 
lient-server model is far lesse�e
tive than that of Web 
ontent 
a
hing. The stret
hed ex-ponential distribution lays out an analyti
al foundation to es-tablish peer-to-peer 
a
hing systems for delivering the rapidlyin
reasing Internet media 
ontent.
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