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Abstract

Field-aware factorization machines (FFM) has experienced significant interest re-
cently since its good performance on large-scale sparse data. Current systems for
this model such as LibFFM, however, runs only on a single machine that would
reach both the computation and storage limit when the data go very large. In this
work, we introduce F2M, a distributed FFM implementation that can offer good
performance and scalability. We will stand on a system designer’s perspective to
demonstrate how to pick the right machine learning and system techniques and
bring them together, making the learning system efficient and scalable. The evalu-
ation result proves the performance benefits of our system.

1 Introduction

As the widely used nonlinear models for recommendation and estimation, factorization machines
(FM) [8] and its optimized version field-aware factorization machines (FFM) [11] have experienced
significant interest in recently years. For recommender systems and polynomial generalized linear
models, FFM offers a computationally efficient and powerful alternative, and it achieves excellent
results by using low-rank expansion of higher degree polynomial terms. This makes the FFM a very
attractive target for high-dimensional sparse data occurring in many settings such as computational
advertising, user profiling, and recommendation. The impact of this model has been recognized
in a number of machine learning and data mining challenges. In particular, almost all the wining
solutions of the CTR prediction contest in kaggle used FFM [12, 13, 15].

Unfortunately, current systems for FFM such as LibFFM [9] runs only on a single machine, which
could reach both the computation and storage limit when the data go very large. This occurs since
each feature in this model need to be embedded into a low-dimensional (f × k) matrix space. A
quick calculation shows that even on the modest datasets such as Criteo’s CTR prediction contest
[12] we have up to 107 features and 1011 model parameters (set f = 100, k = 100), requiring in the
order of 100GB main memory. Worse yet, not only the memory cost but also the computation cost
of the FFM is considerably larger than the conventional linear model. With the explosive growth of
data on the Internet, the fact is that more and more FFM tasks are inadequate to be solved on a single
machine and executed in a distributed manner has become a prerequisite for solving large-scale FFM
problems.

In this paper we introduce a distributed FFM system called F2M, which can ensure both system
efficiency and scalability. We propose a fast distributed optimization algorithm based on asyn-
chronous stochastic gradient descent, along with sparse regularization. Moreover, F2M is based
on an algorithm-specified parameter server (PS) framework [14, 17] with careful system design and
optimizations. Our system is designed to minimize network traffic, maximize CPU and memory
utilizations, provide cache-aware computation and support low-cost fault recovery mechanism. We
evaluate F2M on real workloads and show that our system has the highly competitive performance
and scalability. F2M is available under the Apache 2.0 license.
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Figure 1: Ad click-through rate (CTR) prediction. Figure 1 (a) shows a CTR predication task with just
three kinds of categorical feature. Figure 1 (b) shows the sparse feature vector after one-hot encoding.

Outline. The rest of this paper is structured as follows. In section 2 we begin with quick review
of the conventional linear model, and then introduce FM and FFM. This is followed in section 3
by a description of the data-parallel machine learning. Section 4 has details about the design and
optimization of the F2M system. The preliminary experimental results are provided in Section 5 and
we conclude with a summary in Section 6.

2 From linear model to FM and FFM

Let us first consider a click-through rate (CTR) prediction task: predicting if individual users will
click a given ad. As an example, suppose we just choose three kinds of categorical feature, as shown
in Figure 1. Here we extracted sparse binary features via the widely-used one-hot encoding. We
next discuss how to solve this problem by using linear mode, FM, as well as FFM.

Linear model. Generalized linear models (GLMs) have been widely used for large-scale datasets
as its computational efficiency. The formulation of a conventional linear model is as follow:

f(X) = w0 +
n∑

i=1

wixi (1)

As we all know, the capability of a linear model is limited when the training data is not linear
separable. Generally, we can address this problem toward two directions. One is that we can use
more powerful and nonlinear models such as kernel SVM, tree-based models like GBDT, as well as
deep neural networks. Another general way to address this problem is to use feature combination
such as the degree-2 (or higher degree) polynomial combination. Mathematically, the degree-2
polynomial combination has the following form:

f(X) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

wijxixj (2)

Intuitively, if the feature ‘male’ and the feature ‘programmer’ are combined, our model is more
confident to predict that current user has a higher possibility to click the ad of PC. From formulation
(2) we can also see that the degree-2 polynomial model has O(n2) parameters, where n is the
parameter space of the linear model. By similar reasoning, a degree-m polynomial model has O(nm)
parameters. Unfortunately, the typical setting in our real work is that of a very high-dimensional
feature space n. As we mentioned before, we have up to 107 features on the Criteo’s CTR dataset
after one-hot encoding. As a result, even a quadratic model could be too expensive to estimate.

Factorization Machines. Rendle et al [8, 16] introduce a strategy called factorization machines
(FM) for alleviating this problem via the low-rank expansion instead of a general high-dimensional
expansion. Mathematically, the second-order FM has the following form:

f(X) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

(Vi × Vj)xixj (3)

where, Vi is a low-dimensional vector embedded with feature i. From this formulation we can see
that the FM uses a low-dimensional embedding of the (typically very sparse set of) features in x to
a much smaller k-dimensional space. Compared to the high-degree polynomial model, the FM can
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Figure 2: Comparison of the conventional linear model, FM, and FFM. Notice that we omit the
bias term in linear model and omit the bias and linear term in FM and FFM.

reduce the number of parameters from a exponential level to a linear level O(k×n). Notice that the
FM can also go beyond second-order. For example, the third-order FM has the following form:

f(X) = w0 +
n∑

i=1

wixi +
∑
i<j

(Vi × Vj)xixj +
∑

i<j<k

(Vi × Vj × Vk)xixjxk (4)

Field-aware Factorization Machines. Unlike the FM, where each feature corresponds to an unique
vector, the feature in FFM corresponds to a set of vectors (a low-dimensional (f × k) matrix). The
number of the vectors for each feature equals to the number of the field. Recall the previous CTR
prediction task, where we have three kinds of categorical feature but after one-hot encoding we
extracted a sparse vector with seven binary features. So in this FFM task we can say that we have
seven features but only have three fields. Mathematically, the FFM has the following form:

f(X) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

(Vi,fj × Vj,fi)xixj (5)

where, Vi,fj identifies the vector embedded with feature i when it combines with another feature
that belongs to field j. Compared to the FM, FFM is more flexible and powerful but also has a larger
parameter space O(n× f × k). Figure 2 gives an intuitive representation and summary of the linear
model, FM, and FFM.

While the FFM can significantly reduce the number of parameters compared to the high-dimensional
polynomial model, both the memory cost and the computation cost of the FFM is still consider-
ably larger than the linear model. So the problem size remains formidable and we need tools for
distributed inference: quite often the number of parameters significantly exceeds the amount of
available memory on a single machine. This calls for distributed representations and optimization
algorithms.

3 Data-parallel Machine Learning

In this section, we will talk about the data-parallel ML and focus on three questions: What is the
right abstraction for distributed ML systems? How do current systems support this abstraction?
Why we choose the parameter server (PS) as our underlying computational engine?

Observe that, with a few exceptions, almost all of the ML programs can be viewed as optimization-
centric programs that adhere a general mathematical form: min F (w) OR max F (w), where
F (w) =

∑n
i=1 ℓ(xi, yi, w) + Ω(w). We can typically resolve this problem by using the gradient

decent that has the following form: wt = wt−1−η∗∆(wt−1, D), where, the most time-consuming
step in this formulation is to compute the model update, i.e, the ∆ function. Hence this computation
process needs to be parallelized. For many machine learning algorithms, data-parallelism [18] is the
most common parallelize scheme, where the ∆ function can be parallelized over machines, each of
which computes a sub-update on its own training data subset, following which the sub-updates are
aggregated and applied to the model parameters. Mathematically, the data-parallel machine learning
has the following form:

wt = wt−1 − η ∗
P∑

p=1

∆(wt−1, Dp) (6)
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Figure 3: Data-parallel machine learning architectures. Figure 3 (left) demonstrates three different
data-parallel architectures. Among these architectures, only the PS architecture can perform asynchronous and
fine-grained computation. Figure 3 (right) shows a more detailed view of the PS architecture.

where, Dp is the data partition allocated to worker p. In each iteration, a subset data Dp is called a
mini-batch in ML literature, and can be as small as one training data sample. In practice, the size of
Dp requires manual or automatic tuning for the algorithms to work well.

Many existing systems naturally support data-parallel ML. In this section, we will provide a brief
review and a comparative study of the most popular data-parallel ML systems. We will focus on
their system architecture and programming model. Figure 3 (left) summarizes three different data-
parallel architectures.

AllReduce [10]. AllReduce is an MPI-primitive allowing normal sequential code to work in parallel
implying very low programming overhead. In this model, each worker computes the sub-update ∆
on its own data subset, and further these updates are aggregated via a tree [6], following which the
aggregated result is broadcasted back to each worker. While the AllReduce interface provided by
MPI is easy to use, its drawbacks are also obvious: First, this method waits for the slowest machine
and therefore does not scale well to large shared clusters. Second, MPI implements this interface
without fault-tolerance. Moreover, with the increasing size of ML models, both the networking
bandwidth and memory cost could become the performance bottleneck.

MapReduce-like [19] (data-flow) systems such as Hadoop and Spark [20, 21] also simplified the
task of building data-parallel ML applications. Based on them, the ML libraries such as Mahout
[22] (based on Hadoop) and MLI [23] (based on Spark) have been widely used in both academia and
industry. However, most of these systems adopt the iterative MapReduce paradigm that mandates
synchronous and coarse-grained computation, which is similar to the AllReduce paradigm. Such
inherent design for batch tasks often incurs great inefficiency and is inadequate to build the “big
model" ML applications. Moreover, these systems typically require significant rewriting to existing
single-machine ML code by using high-level APIs.

Parameter Server [23] system has recently emerged as an efficient approach to resolve the “big
model" ML challenge. Under this model, both the training data and workloads are spread across
worker nodes, while the server nodes maintain the globally shared parameters. In contrast to the
iterative MapReduce model, computation in PS can be asynchronous and fine-grained, and hence
can improve CPU utilization and reduce communication cost dramatically. Another benefit of the PS
model is that PS does not require developers to change their programming habits on single-machine
ML by using the push and pull interfaces. Figure 3 (right) shows the PS architecture.

Here we choose the parameter server as our underlying computational engine and the reasons are
as follows: First, the model parameters of the FFM is typically very large, hence the coarse-grained
and synchronous systems like Spark and MPI-AllReduce would face significant networking and
synchronization overhead. Moreover, we can easily migrate the single-machine implementation of
FFM to the distributed setting by using the PS. In this work, we designed an algorithm-specified
parameter server with careful system design and optimizations, which will be discussed in the next
section.

4 F2M: Design and Optimization

In this section, we will discuss the details about the design and optimization of F2M. In our pre-
sentation, we first cover the single-machine FFM implementation and then show how to seamlessly
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Figure 4: The design and implementation of F2M. Figure 4 (a) demonstrates our single-machine system
design, where we divide our system into four modulars. Figure 4 (b) shows the different consistency models
provided by F2M, including BSP, SSP and TAP. Figure 4 (c) shows the batched block form of message and the
signal queue.

migrate it to a distributed setting. In addition, we will focus on the optimizations of network, which
significantly improves our system performance. Notice that these optimizations we purpose in this
section are general and can be easily adopted in other ML systems.

4.1 Single-machine Implementation

On the single machine, we focus on performance and flexibility when designing our system. As
Figure 4 (a) shows, we divide F2M system into four modulars, each of which has the maximum flex-
ibility to implement different capabilities and characteristics. In addition, to maximize the system
perform, we use the openmp and SSE3 to accelerate the training process.

4.2 Distributed Algorithm

On the distributed setting, we expend our single-machine implementation by using the asynchronous
stochastic gradient descent under the PS. As we discussed before, our distributed implementation
can easily retro-fit existing single-machine implementation by using the push and pull API provided
by the PS, as shown below:

whi le ( 1 ) { p u l l ( sub_mode ) ; g r ad =CalGrad ( da t a , sub_mode ) ; push ( g rad ) ; }

Distributed F2M has been divided into three modulars: the master node runs the control logic, server
nodes update the model and the worker nodes compute the gradient. In a more detailed view, the
server nodes store assigned parameters partition in its memory, and handles the aggregation and
updating operations associated with that partition. Each worker node is responsible for storing a
portion of the training data to compute local gradient. The master node maintains the bookkeeping
of each worker and server process, which can be recovered without interrupting the computation
when it crashes by non-catastrophic machine failures. Similar to existing systems, we assume that
the master node failures are rare and hence provide no protection for that. Notice that worker nodes
communicate only with the server nodes and the master node, not among themselves.

We also use the ℓ1 regularization, which has been widely used in linear models for high dimensional
data such as computational advertising [27]. We pick the penalty Ω[w] := λ1||w||1, where λ1

controls the degree of sparsity. The sparse model induced by the ℓ1 regularization not only penalizes
complex model, it also reduces the computation cost of the gradient and saves the communication
traffic. It results in a smaller final model which further makes deploying this model on an online
service easier.

In addition, F2M can support asynchronous computation and flexible consistency model, which has
been shown to be more efficient than synchronous computation (e.g., BSP model [28]) and totally
asynchronous computation [18] for many purposes [29], as shown in Figure 4 (b).
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Figure 5: Evaluation result. Figure 5 (a) demonstrates the scalability of F2M. Using 32 machines, F2M
can achieve 18.5 times speedup. F2M also has a highly competitive performance on single machine. Figure
5 (b) shows the effect on different consistency bound. Figure 5 (c) demonstrates the effect of our networking
optimization, which can significantly reduce the network traffic and overhead.

4.3 System Optimization

Our system is developed by C++ and it re-uses a number of existing libraries such as MPICH2
for communication, Protobuf for serialization, and Snappy for data compression. F2M can run
over the cluster resource manager such as Yarn [24] or Mesos [25], and also provides an easy way
for deployment by using the docker container [26]. In this paper, we focus on the optimizations
on communication, which significantly improves our system performance. We now focus on two
aspects of our design, including the message compression and the message transport.

Message compression is desirable in large-scale ML problems, hence we use several approaches in
our system to reduce the network traffic as much as possible: (1) We avoid sending single items and
pack all of these items into a batched block form in each iteration, which reduces the size of each
message, as shown in Figure 4 (c). (2) Since many ML problems may use the same training data
in different iterations, we cache the key lists in receive nodes. Later the senders can send only a
hash value of this list rather than the list itself. (3) We use the Protobuf to serialize our message and
further use the Snappy compression library to compress the serialized message. (4) We use lossy
fixed-point compression for data communication. By default, both the model and gradient entries
are represented as 32 bit floats. In F2M, we compress these values to lower precision integers.

Message transport in F2M also has been designed carefully. To maximize CPU utilization and
reduce latency, F2M implements two signal queues as in-memory buffer, as shown in Figure 4 (c).
As this figure shows, we separate the computation and networking in different threads, hence the
networking threads will not block the computation. In addition, zero copy technique is also used in
signal queue, where we pass pointers rather than copy data values to the queue.

5 Preliminary Evaluation

Our evaluation is based on a cluster of 32 machines, each of which has a 16 cores Intel Xeon E5620
(2.40 GHz) processor with 32G memory. All machines are connected via 1Gb Ethernet. Our datasets
come from the Cretio CTR [37]. The former is used in a recent Kaggle competition, for which we
used the first 80% for training and the rest for test. The highlights of our results can be found in
Figure 5. If this paper is accepted, we plan to demo more detailed evaluation of our system during
the workshop.

6 Conclusion and Future Work

In this work, we demonstrate a distributed FFM implementation called F2M, which can offer good
performance and scalability. We propose a fast distributed optimization algorithm based on asyn-
chronous stochastic gradient descent. Moreover, F2M is based on an algorithm-specified parameter
server framework with careful system design and optimizations. The evaluation result proves the
performance benefits of our system.

In the future, we plan to support a wide range of front ends for languages like Python, R, Go and
perhaps others, making our system easier to use.
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